Microcapsules are appealing containers for delivering active ingredients, such as drugs and cosmetics, or conducting chemical and biological reactions on a small scale. To control the timing and location of release of these encapsulants, the shells of micr ...
How do habits change? Some mobility scholars describe habits as regularly evolving. Several psychologists, on the other hand, observe radical changes originating from disruptions in our environment. I show that these two perspectives can be integrated usin ...
Significant advances have been made in the synthesis of chemically selective environments within metal-organic frameworks, yet materials development and industrial implementation have been hindered by the inability to predictively control crystallite size ...
Convergent beam electron diffraction is routinely applied for studying deformation and local strain in thick crystals by matching the crystal structure to the observed intensity distributions. Recently, it has been demonstrated that CBED can be applied for ...
In the ongoing intense quest to increase the performance of perovskite solar cells, optimizing the morphology of perovskite material has become imperative to achieve high power conversion efficiencies. Despite the fact that nucleation plays a key role in c ...
Conductivity of methylammonium lead triiodide (MAPbI(3)) perovskite was measured on different mesoporous metal oxide scaffolds: TiO2, Al2O3, and ZrO2, as a function of incident light irradiation and temperature. It was found that MAPbI(3) exhibits intrinsi ...
CH3NH3PbI3 perovskite solar cells with a mesoporous TiO2 layer and spiro-MeOTAD as a hole transport layer (HTL) with three different CH3NH3I concentrations (0.032 M, 0.044 M and 0.063 M) were investigated. Strong variations in crystal size and morphology r ...
Microporous limestones composed of micrite crystals constitute sizeable hydrocarbon reservoirs throughout the world and especially in the Middle East. However, the crystallization history of micrites is poorly understood. Scanning electronic microscopy (SE ...
Hematite is a semiconducting mineral with a role in natural photoelectrochemical processes, and has been studied from the viewpoint of solar energy utilization. Hematite is an anisotropic conductor, with faster conduction parallel to (001) planes. Flatband ...
The understanding of material self-assembling and self-organization mechanisms, at mesoscale, is crucial for nanotechnologies development. Such structures, hierarchically organized in superlattices or colloïdal crystals, are observed in inorganic or organo ...