Concept

Trochoïde

In geometry, a trochoid () is a roulette curve formed by a circle rolling along a line. It is the curve traced out by a point fixed to a circle (where the point may be on, inside, or outside the circle) as it rolls along a straight line. If the point is on the circle, the trochoid is called common (also known as a cycloid); if the point is inside the circle, the trochoid is curtate; and if the point is outside the circle, the trochoid is prolate. The word "trochoid" was coined by Gilles de Roberval. As a circle of radius a rolls without slipping along a line L, the center C moves parallel to L, and every other point P in the rotating plane rigidly attached to the circle traces the curve called the trochoid. Let = b. Parametric equations of the trochoid for which L is the x-axis are where θ is the variable angle through which the circle rolls. If P lies inside the circle (b < a), on its circumference (b = a), or outside (b > a), the trochoid is described as being curtate ("contracted"), common, or prolate ("extended"), respectively. A curtate trochoid is traced by a pedal (relative to the ground) when a normally geared bicycle is pedaled along a straight line. A prolate trochoid is traced by the tip of a paddle (relative to the water's surface) when a boat is driven with constant velocity by paddle wheels; this curve contains loops. A common trochoid, also called a cycloid, has cusps at the points where P touches the line L. A more general approach would define a trochoid as the locus of a point orbiting at a constant rate around an axis located at , which axis is being translated in the x-y-plane at a constant rate in either a straight line, or a circular path (another orbit) around (the hypotrochoid/epitrochoid case), The ratio of the rates of motion and whether the moving axis translates in a straight or circular path determines the shape of the trochoid. In the case of a straight path, one full rotation coincides with one period of a periodic (repeating) locus.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.