Résumé
frame|right|Le point mobile engendre une cycloïde droite.La cycloïde droite, aussi appelée roue d'Aristote ou roulette de Pascal, est une courbe plane transcendante, trajectoire d'un point fixé à un cercle qui roule sans glisser sur une droite ; elle a été appelée cycloïde pour la première fois par Jean de Beaugrand. Il s'agit donc d'une courbe cycloïdale particulière dont la directrice est une droite et dont le point générateur est situé sur le cercle lui-même ; c'est un cas particulier de trochoïde. Alors que le chewing-gum (point directeur) collé sur le pneu d'une roue de vélo décrit une cycloïde parce qu'il entre en contact avec la chaussée (directrice) à chaque tour de roue, la valve (point directeur) d'une roue de vélo avançant en ligne droite décrit une trochoïde qui n'est pas une cycloïde car elle n'entre pas en contact avec la chaussée (directrice). Le mot vient du grec , (« cercle, roue ») et du radical , (« en forme de, semblable à »), bien que cette courbe n'ait pas été connue des Grecs. Selon Torricelli, son maître Galilée aurait été le premier à étudier cette courbe et à lui donner ce nom, en 1599, mais d'après John Wallis, sa construction aurait été mentionnée par Charles de Bovelles, et même encore auparavant au par Nicolas de Cues alors qu'il s’essayait à la quadrature du cercle. Moritz Cantor dément toutefois cette dernière assertion et confirme que Bovelles est le premier à mentionner le problème de la courbe décrite par un point d'une roue roulant sur un plan. Toujours est-il qu’en 1626, Mersenne en reprit l'étude et essaya, sans succès, de déterminer l'aire sous une arche de cycloïde. Il faudra attendre 1634 pour que Roberval, un membre de l'académie de Mersenne, démontre, mathématiquement cette fois, que cette aire est égale à trois fois l'aire du cercle qui l'a engendrée. Descartes, qui fut consulté sur ce calcul, le trouva intéressant mais trivial. La cycloïde et le calcul de ses propriétés furent alors l'objet de défis constants entre mathématiciens, si bien qu'elle fut surnommée « l'Hélène des géomètres.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.