In thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables. Once such a set of values of thermodynamic variables has been specified for a system, the values of all thermodynamic properties of the system are uniquely determined. Usually, by default, a thermodynamic state is taken to be one of thermodynamic equilibrium. This means that the state is not merely the condition of the system at a specific time, but that the condition is the same, unchanging, over an indefinitely long duration of time. Thermodynamics sets up an idealized conceptual structure that can be summarized by a formal scheme of definitions and postulates. Thermodynamic states are amongst the fundamental or primitive objects or notions of the scheme, for which their existence is primary and definitive, rather than being derived or constructed from other concepts. A thermodynamic system is not simply a physical system. Rather, in general, infinitely many different alternative physical systems comprise a given thermodynamic system, because in general a physical system has vastly many more microscopic characteristics than are mentioned in a thermodynamic description. A thermodynamic system is a macroscopic object, the microscopic details of which are not explicitly considered in its thermodynamic description. The number of state variables required to specify the thermodynamic state depends on the system, and is not always known in advance of experiment; it is usually found from experimental evidence. The number is always two or more; usually it is not more than some dozen. Though the number of state variables is fixed by experiment, there remains choice of which of them to use for a particular convenient description; a given thermodynamic system may be alternatively identified by several different choices of the set of state variables.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
ME-251: Thermodynamics and energetics I
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
PHYS-105: Advanced physics II (thermodynamics)
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
PHYS-106(a): General physics : thermodynamics
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Afficher plus
Publications associées (32)
Concepts associés (12)
Volume (thermodynamics)
In thermodynamics, the volume of a system is an important extensive parameter for describing its thermodynamic state. The specific volume, an intensive property, is the system's volume per unit of mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature. For example, volume is related to the pressure and temperature of an ideal gas by the ideal gas law. The physical volume of a system may or may not coincide with a control volume used to analyze the system.
Variable d'état
En thermodynamique, des variables d'état sont des paramètres qui caractérisent l'état d'équilibre d'un système, tels que le volume, la température, la pression et la quantité de matière. Ces caractérisations sont elles-mêmes des fonctions d'état du système. Une variable d'état n'a de sens que pour un système à l'équilibre thermodynamique. Une variable d'état est toujours une grandeur physique scalaire. Il s'agit soit d'une grandeur extensive, définie sur l'ensemble du système considéré, soit d'une grandeur intensive, qui doit alors prendre la même valeur en tout point du système.
Principes de la thermodynamique
vignette|Entropie d'un corps à 0 K (à gauche) Corps avec une température supérieur à 0 K (à droite) Les principes de la thermodynamique sont les principales lois (principes en fait, car non démontrés) qui régissent la thermodynamique : premier principe de la thermodynamique : principe de conservation de l'énergie ; introduction de la fonction énergie interne, U ; deuxième principe de la thermodynamique : principe d'évolution ; création d'entropie, S ; troisième principe de la thermodynamique ou principe de N
Afficher plus
MOOCs associés (6)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.