Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'optimalité dans la théorie de la décision et l'estimation impartiale, en mettant l'accent sur la suffisance, l'exhaustivité et les limites inférieures du risque.
Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.
S'insère dans la dualité entre les intervalles de confiance et les tests d'hypothèses, soulignant l'importance de la précision et de l'exactitude dans l'estimation.
Explore les vecteurs aléatoires gaussiens et leurs propriétés statistiques, en soulignant l'importance de spécifier des propriétés statistiques dans des vecteurs aléatoires à valeur complexe.
Couvre les principes fondamentaux de la théorie de la détection et de l'estimation, en se concentrant sur l'erreur moyenne au carré et le test d'hypothèses.