In this paper we study a question related to the classical Erdos-Ko-Rado theorem, which states that any family of k-element subsets of the set [n] = {1,..., n} in which any two sets intersect has cardinality at most ((n-1)(k-1)). We say that two non-empty ...
Two families A and B, of k-subsets of an n-set are called cross intersecting if A boolean AND B not equal phi for all A,B epsilon b. Strengthening the classical ErclOs-Ko-Rado theorem, Pyber proved that vertical bar A vertical bar vertical bar B vertical b ...
In this paper we study some generalized versions of a recent result due to Covert, Koh, and Pi (2015). More precisely, we prove that if a subset in a regular variety satisfies vertical bar epsilon vertical bar >> q(d-1/2 + 1/k-1), then Delta(k,F)(epsilon) ...
The present invention is notably directed to computer-implemented methods and systems for recovering an image. Present methods comprise: accessing signal data representing signals; identifying subsets of points arranged so as to span a region of interest a ...
Let F-q be a finite field of q elements, where q is a large odd prime power and Q = a(1)x(1)(c1) + ..... + a(d)x(d)(cd) is an element of F-q[x(1) ,...,x(d)], where 2
Let parallel to.parallel to be a norm in R-d whose unit ball is B. Assume that V subset of B is a finite set of cardinality n, with Sigma(v is an element of V) v = 0. We show that for every integer k with 0
We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d, there is a constant such that whenever are n-element subsets of , we can find a point and subsets for every , each of size at least , suc ...
In this paper, we prove several extremal results for geometrically defined hypergraphs. In particular, we establish an improved lower bound, single exponentially decreasing in k, on the best constant delta > 0 such that the vertex classes P-1,...,P-k of ev ...
Society for Industrial and Applied Mathematics2016
In this article we study some necessary and sufficient conditions for the existence of solutions in W-0(1,infinity) (Omega; Lambda(k)) of the differential inclusion d omega is an element of E a.e. in Omega where E subset of Lambda(k+1) is a prescribed set. ...
Let P be a set of n > d points in for d >= 2. It was conjectured by Zvi Schur that the maximum number of (d-1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any ...