Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Erreur typeLerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.
Règle 68-95-99,7vignette|Illustration de la règle 68-95-99.7 (à partir d'une expérience réelle, ce qui explique l'asymétrie par rapport à la loi normale). En statistique, la règle 68-95-99,7 (ou règle des trois sigmas ou règle empirique) indique que pour une loi normale, presque toutes les valeurs se situent dans un intervalle centré autour de la moyenne et dont les bornes se situent à trois écarts-types de part et d'autre de celle-ci. Environ 68,27 % des valeurs se situent à moins d'un écart-type de la moyenne.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Erreur de mesurevignette|upright|Mesurage avec une colonne de mesure. Une erreur de mesure, dans le langage courant, est Exemples usuels et fictifs d'après cette définition : L'indication d'une balance de ménage pour une masse de certifiée est de . L'erreur de mesure est de – ; La distance entre deux murs, donnée par un télémètre laser est de , valeur considérée ici comme exacte. La valeur mesurée, au même endroit, avec un mètre à ruban est de . L'erreur de mesure, avec le mètre à ruban, est de ou ; La différence sur 24 heures de temps entre une pendule radio pilotée et une montre bracelet est de .
Écart typethumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité.