Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la combinaison de données au repos avec des données en mouvement, en mettant l'accent sur les complexités de l'architecture Lambda et l'évaluation de la qualité des flux et des lots.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Explore le temps de l'événement par rapport au temps de traitement, les opérations de traitement de flux, les jointures de flux et le traitement des données en retard ou hors-commande dans le traitement de flux de données.
Couvre les outils collaboratifs de science des données, les concepts de big data, Spark, et le traitement du flux de données, avec des conseils pour le projet final.