Concept

Icosian

In mathematics, the icosians are a specific set of Hamiltonian quaternions with the same symmetry as the 600-cell. The term can be used to refer to two related, but distinct, concepts: The icosian group: a multiplicative group of 120 quaternions, positioned at the vertices of a 600-cell of unit radius. This group is isomorphic to the binary icosahedral group of order 120. The icosian ring: all finite sums of the 120 unit icosians. The 120 unit icosians, which form the icosian group, are all even permutations of: 8 icosians of the form 1⁄2(±2, 0, 0, 0) 16 icosians of the form 1⁄2(±1, ±1, ±1, ±1) 96 icosians of the form 1⁄2(0, ±1, ±1/φ, ±φ) In this case, the vector (a, b, c, d) refers to the quaternion a + bi + cj + dk, and φ represents the golden ratio ( + 1)/2. These 120 vectors form the H4 root system, with a Weyl group of order 14400. In addition to the 120 unit icosians forming the vertices of a 600-cell, the 600 icosians of norm 2 form the vertices of a 120-cell. Other subgroups of icosians correspond to the tesseract, 16-cell and 24-cell. The icosians lie in the golden field, (a + b) + (c + d)i + (e + f)j + (g + h)k, where the eight variables are rational numbers. This quaternion is only an icosian if the vector (a, b, c, d, e, f, g, h) is a point on a lattice L, which is isomorphic to an E8 lattice. More precisely, the quaternion norm of the above element is (a + b)2 + (c + d)2 + (e + f)2 + (g + h)2. Its Euclidean norm is defined as u + v if the quaternion norm is u + v. This Euclidean norm defines a quadratic form on L, under which the lattice is isomorphic to the E8 lattice. This construction shows that the Coxeter group embeds as a subgroup of . Indeed, a linear isomorphism that preserves the quaternion norm also preserves the Euclidean norm.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.