Liberté asymptotiqueEn théorie quantique des champs, la liberté asymptotique est la propriété que possèdent certaines théories basées sur un groupe de jauge non abélien de voir leur constante de couplage décroître lorsque les distances deviennent petites (par rapport à l'échelle de la théorie) ou réciproquement lorsque les énergies mises en jeu deviennent importantes par rapport à une certaine échelle caractéristique . Le premier exemple de théorie asymptotiquement libre est celui de la chromodynamique quantique (ou en abrégé QCD) servant à décrire les quarks ainsi que leurs interactions, qui est appelée l'interaction forte.
Confinement de couleurLe confinement de couleur (ou simplement confinement) est une propriété des particules élémentaires possédant une charge de couleur : ces particules ne peuvent être isolées et sont observées uniquement avec d'autres particules de telle sorte que la combinaison formée soit blanche, c’est-à-dire que sa charge de couleur totale soit nulle. Cette propriété est à l'origine de l'existence des hadrons. Le phénomène est décrit dans le cadre de la chromodynamique quantique (ou CDQ, QCD en anglais).
ÉtrangetéEn physique des particules, l’étrangeté est une propriété de certaines particules élémentaires. Elle est notée S et est un nombre entier relatif, qui peut donc être positif ou négatif. Elle intervient dans les calculs de désintégration rapide liée à l'interaction forte. En notant le nombre d'antiquarks strange et le nombre de quarks strange, alors l'étrangeté de la particule est donnée par : Le baryon possédant l'étrangeté la plus importante est l'hypéron −, pour lequel S = -3.
Potentiel de YukawaUn potentiel de Yukawa (appelé également 'potentiel de Coulomb écranté') est un potentiel de la forme Hideki Yukawa montra dans les années 1930 qu'un tel potentiel provient de l'échange d'un champ scalaire massif tel que celui d'un pion de masse . La particule médiatrice du champ possédant une masse, la force correspondante a une portée inversement proportionnelle à sa masse. Pour une masse nulle, le potentiel de Yukawa devient équivalent à un potentiel coulombien, et sa portée est considérée comme infinie.
Charm (quantum number)Charm (symbol C) is a flavour quantum number representing the difference between the number of charm quarks (_charm quark) and charm antiquarks (_Charm antiquark) that are present in a particle: By convention, the sign of flavour quantum numbers agree with the sign of the electric charge carried by the quarks of corresponding flavour. The charm quark, which carries an electric charge (Q) of +, therefore carries a charm of +1. The charm antiquarks have the opposite charge (Q = −), and flavour quantum numbers (C = −1).
BottomnessIn physics, bottomness (symbol B′ using a prime as plain B is used already for baryon number) or beauty is a flavour quantum number reflecting the difference between the number of bottom antiquarks (n_Bottom antiquark) and the number of bottom quarks (n_Bottom quark) that are present in a particle: Bottom quarks have (by convention) a bottomness of −1 while bottom antiquarks have a bottomness of +1. The convention is that the flavour quantum number sign for the quark is the same as the sign of the electric charge (symbol Q) of that quark (in this case, Q = −).
G-parityIn particle physics, G-parity is a multiplicative quantum number that results from the generalization of C-parity to multiplets of particles. C-parity applies only to neutral systems; in the pion triplet, only π0 has C-parity. On the other hand, strong interaction does not see electrical charge, so it cannot distinguish amongst π+, π0 and π−. We can generalize the C-parity so it applies to all charge states of a given multiplet: where ηG = ±1 are the eigenvalues of G-parity.
Gluon fieldIn theoretical particle physics, the gluon field is a four-vector field characterizing the propagation of gluons in the strong interaction between quarks. It plays the same role in quantum chromodynamics as the electromagnetic four-potential in quantum electrodynamics - the gluon field constructs the gluon field strength tensor. Throughout this article, Latin indices take values 1, 2, ..., 8 for the eight gluon color charges, while Greek indices take values 0 for timelike components and 1, 2, 3 for spacelike components of four-dimensional vectors and tensors in spacetime.
Jet (physique des particules)A jet is a narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. Particles carrying a color charge, such as quarks, cannot exist in free form because of quantum chromodynamics (QCD) confinement which only allows for colorless states. When an object containing color charge fragments, each fragment carries away some of the color charge. In order to obey confinement, these fragments create other colored objects around them to form colorless objects.
FemtomètreLe femtomètre (symbole fm) est une unité de mesure de longueur dérivée du mètre. Il vaut un millionième de milliardième de mètre, soit 10-15 = . 1 femtomètre est la taille d'1 quark Le femtomètre fut d'abord nommé « fermi » en l'honneur du physicien Italien Enrico Fermi (le fermi comme tel ne fait pas partie du Système international d'unités). Son nom est formé à l'aide du préfixe femto, qui provient du danois Femten, signifiant « quinze ». Le femtomètre est entré dans le système des poids et mesures en 1964.