La glace amorphe s'oppose à la glace cristalline que l'on retrouve souvent à l'état naturel sous une structure hexagonale. Les molécules d'eau qui la composent n'ont pas d'arrangement précis, amorphe signifiant "sans forme". Lorsque l'eau gèle, elle prend une structure cristalline et son volume augmente ; la glace amorphe a la particularité de garder le même volume.
La plupart des glaces amorphes sont créées sous pression, en laboratoire. Les structures fondamentales sont généralement des formes compliquées. Ainsi, selon la pression et les basses températures utilisées, plusieurs réseaux de molécules d'eau peuvent s'imbriquer les unes dans les autres et former des structures particulières.
Sous une pression relativement faible, les chercheurs peuvent former de la glace amorphe de basse densité qui a, comme la glace usuelle, une densité plus faible que l'eau liquide. Par contre, la glace amorphe de haute densité a déjà une densité plus élevée que l'eau liquide et coulerait si elle était plongée dedans. Du moins en théorie, car si cette glace venait en contact avec de l'eau liquide dans des conditions normales, sa structure rechangerait immédiatement. La glace amorphe de très haute densité est la plus dense. Sa masse volumique est de .
La glace amorphe est probablement la forme la plus abondante d’eau dans l’univers.
La glace amorphe de faible densité est généralement formée en laboratoire par une lente accumulation de molécules de vapeur d'eau (dépôt physique en phase vapeur) sur une surface cristalline métallique très lisse sous 120 K. Dans l'espace, on s'attend à ce qu'elle se forme de la même manière sur divers substrats froids, comme des particules de poussière.
Fondant au-delà de sa température de transition vitreuse entre , la glace amorphe de faible densité est plus visqueuse que l'eau normale. Des études récentes ont montré que le liquide visqueux reste dans cette autre forme d'eau liquide jusqu'à une température comprise entre , une plage de température qui correspond généralement à celle de la glace normale.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Couvre la formation des cristaux de glace, les processus, les formes et le métamorphisme de la neige, expliquant la signification du métamorphisme de la neige et la croissance des cristaux de glace.
Explore les propriétés physiques de la neige, en se concentrant sur le volume, la profondeur et la porosité, et leur importance dans la compréhension du comportement de la neige.
La molécule d’eau, de formule , est le constituant essentiel de l’eau pure. Celle-ci contient également des ions résultant de l’autoprotolyse de l’eau selon l’équation d'équilibre : H + OH (ou 2 HO + OH). L’eau pure n’est pas présente dans la nature et doit être obtenue par des processus physiques. Cette molécule a des propriétés complexes à cause de sa polarisation (voir la section Nature dipolaire). L’eau à pression ambiante (environ un bar) est gazeuse au-dessus de , solide en dessous de et liquide entre les deux.
thumb|Expérience de vitrification. La vitrification est la transformation d'une substance en verre. Habituellement, elle est réalisée par un refroidissement rapide d'un liquide via sa transition vitreuse. Certaines réactions chimiques peuvent aussi entraîner la formation de verres. Le mot est aussi utilisé pour la vitrification de liquide antigel dans le processus de cryoconservation. La vitrification est caractéristique des matériaux amorphes ou des systèmes désordonnés, et se produit lorsque la liaison entre deux particules élémentaires (atomes, molécules, .
vignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).