Résumé
The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor that are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatory neurotransmitter. The mGluRs perform a variety of functions in the central and peripheral nervous systems: For example, they are involved in learning, memory, anxiety, and the perception of pain. They are found in pre- and postsynaptic neurons in synapses of the hippocampus, cerebellum, and the cerebral cortex, as well as other parts of the brain and in peripheral tissues. Like other metabotropic receptors, mGluRs have seven transmembrane domains that span the cell membrane. Unlike ionotropic receptors, metabotropic glutamate receptors are not ion channels. Instead, they activate biochemical cascades, leading to the modification of other proteins, such as ion channels. This can lead to changes in the synapse's excitability, for example by presynaptic inhibition of neurotransmission, or modulation and even induction of postsynaptic responses. A dimeric organization of mGluRs is required for signaling induced by agonists. Eight different types of mGluRs, labeled mGluR1 to mGluR8 ( to ), are divided into groups I, II, and III. Receptor types are grouped based on receptor structure and physiological activity. The mGluRs are further divided into subtypes, such as mGluR7a and mGluR7b. The mGluRs in group I, including mGluR1 and mGluR5, are stimulated most strongly by the excitatory amino acid analog L-quisqualic acid. Stimulating the receptors causes the associated enzyme phospholipase C to hydrolyze phosphoinositide phospholipids in the cell's plasma membrane. This leads to the formation of inositol 1,4,5-trisphosphate (IP3) and diacyl glycerol. Due to its hydrophilic character, IP3 can travel to the endoplasmic reticulum, where it induces, via fixation on its receptor, the opening of calcium channels increasing in this way the cytosolic calcium concentrations.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
BIO-499: Neural circuits of motivated behaviors
Motivated behaviors fulfil the basic physiological needs of animals and enable their safety. In this course, you will learn about the neuronal circuits that detect potential dangers in the environment
NX-450: Computational neurosciences: biophysics
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
Afficher plus