Graphe couronneEn théorie des graphes, une branche des mathématiques, un graphe couronne à 2 n sommets est un graphe non orienté comportant deux jeux de sommets ui et vi reliés par une arête de ui à vj à chaque fois que i ≠ j. Le graphe couronne à six sommets est un graphe cycle. Le graphe couronne à huit sommets est le graphe hexaédrique, celui qui décrit les sommets et les arêtes d'un cube. Le graphe couronne peut être vu comme un graphe biparti complet d'où l'on aurait retiré les arêtes formant un couplage parfait (les arêtes horizontales absentes sur la figure).
Produit cartésien (graphe)Le produit cartésien, ou somme cartésienne, est une opération sur deux graphes et résultant en un graphe . Parler de produit ou de somme pour cette opération n'est pas une contradiction, mais une explication basée sur deux aspects différents : la construction peut se voir comme un produit, tandis que de nombreuses propriétés sont basées sur la somme. Soient deux graphes et . Le produit cartésien est défini comme suit : Autrement dit, l'ensemble résultant des sommets est le produit cartésien .
Morphisme de graphesUn morphisme de graphes ou homomorphisme de graphes est une application entre deux graphes (orientés ou non orientés) qui respecte la structure de ces graphes. Autrement dit l'image d'un graphe dans un graphe doit respecter les relations d'adjacence présentes dans . thumb|alt=Un homomorphisme entre deux graphes|Le graphe de gauche se projette dans le graphe de droite, par exemple de cette façon là Si et sont deux graphes dont on note les sommets V(G) et V(H) et les arêtes E(G) et E(H), une application qui envoie les sommets de G sur ceux de H est un morphisme de graphes si : , .
Bipartite double coverIn graph theory, the bipartite double cover of an undirected graph G is a bipartite, covering graph of G, with twice as many vertices as G. It can be constructed as the tensor product of graphs, G × K_2. It is also called the Kronecker double cover, canonical double cover or simply the bipartite double of G. It should not be confused with a cycle double cover of a graph, a family of cycles that includes each edge twice. The bipartite double cover of G has two vertices u_i and w_i for each vertex v_i of G.
Graphe de PetersenLe graphe de Petersen est, en théorie des graphes, un graphe particulier possédant et . Il s'agit d'un petit graphe qui sert d'exemple et de contre-exemple pour plusieurs problèmes de la théorie des graphes. Il porte le nom du mathématicien Julius Petersen, qui l'introduisit en 1898 en tant que plus petit graphe cubique sans isthme dont les arêtes ne peuvent être colorées avec trois couleurs. Il a cependant été mentionné par Alfred Kempe pour la première fois auparavant, en 1886.