In graph theory, the bipartite double cover of an undirected graph G is a bipartite, covering graph of G, with twice as many vertices as G. It can be constructed as the tensor product of graphs, G × K_2. It is also called the Kronecker double cover, canonical double cover or simply the bipartite double of G.
It should not be confused with a cycle double cover of a graph, a family of cycles that includes each edge twice.
The bipartite double cover of G has two vertices u_i and w_i for each vertex v_i of G. Two vertices u_i and w_j are connected by an edge in the double cover if and only if v_i and v_j are connected by an edge in G. For instance, below is an illustration of a bipartite double cover of a non-bipartite graph G. In the illustration, each vertex in the tensor product is shown using a color from the first term of the product (G) and a shape from the second term of the product (K_2); therefore, the vertices u_i in the double cover are shown as circles while the vertices w_i are shown as squares.
The bipartite double cover may also be constructed using adjacency matrices (as described below) or as the derived graph of a voltage graph in which each edge of G is labeled by the nonzero element of the two-element group.
The bipartite double cover of the Petersen graph is the Desargues graph: K_2 × G(5,2) = G(10,3).
The bipartite double cover of a complete graph K_n is a crown graph (a complete bipartite graph K_n,n minus a perfect matching). In particular, the bipartite double cover of the graph of a tetrahedron, K_4, is the graph of a cube.
The bipartite double cover of an odd-length cycle graph is a cycle of twice the length, while the bipartite double of any bipartite graph (such as an even length cycle, shown in the following example) is formed by two disjoint copies of the original graph.
If an undirected graph G has a matrix A as its adjacency matrix, then the adjacency matrix of the double cover of G is
and the biadjacency matrix of the double cover of G is just A itself.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
En théorie des graphes, le graphe de Desargues est un graphe cubique symétrique possédant 20 sommets et 30 arêtes. Il doit son nom à Girard Desargues. Le graphe de Desargues est isomorphe au graphe biparti de Kneser et au graphe généralisé de Petersen GP(10,3). C'est aussi le graphe d'incidence de la configuration de Desargues. Le graphe de Desargues est hamiltonien et peut être décrit par la notation LCF : [5, −5, 9, −9]5.
Le produit tensoriel est une opération sur deux graphes et résultant en un graphe . Il est également appelé produit direct, produit de Kronecker ou produit catégorique. Soient deux graphes et . Le produit tensoriel est défini comme suit : l'ensemble de ses sommets est le produit cartésien ; et sont adjacents dans si et seulement si et sont adjacents dans et et sont adjacents dans . Autrement dit, deux sommets sont voisins si les sommets dont ils sont issus étaient voisins dans les deux graphes.
Un morphisme de graphes ou homomorphisme de graphes est une application entre deux graphes (orientés ou non orientés) qui respecte la structure de ces graphes. Autrement dit l'image d'un graphe dans un graphe doit respecter les relations d'adjacence présentes dans . thumb|alt=Un homomorphisme entre deux graphes|Le graphe de gauche se projette dans le graphe de droite, par exemple de cette façon là Si et sont deux graphes dont on note les sommets V(G) et V(H) et les arêtes E(G) et E(H), une application qui envoie les sommets de G sur ceux de H est un morphisme de graphes si : , .
We develop an algorithm to solve the bottleneck assignment problem (BAP) that is amenable to having computation distributed over a network of agents. This consists of exploring how each component of the algorithm can be distributed, with a focus on one com ...
Let c denote the largest constant such that every C-6-free graph G contains a bipartite and C-4-free subgraph having a fraction c of edges of G. Gyori, Kensell and Tompkins showed that 3/8
Vizing's celebrated theorem asserts that any graph of maximum degree Delta admits an edge coloring using at most Delta + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2 Delt ...