Face (géométrie)vignette|Un cube : les surfaces en rouge sont les faces du cube. Chaque sommet est entouré par trois faces. En géométrie, les faces d'un polyèdre sont les polygones qui le bordent. Par exemple, un cube possède six faces qui sont des carrés. Le suffixe èdre (dans polyèdre) est dérivé du grec hedra, qui signifie face. Par extension, les faces d'un polytope de dimension n sont tous les polytopes de dimension strictement inférieure à n qui le bordent (et pas seulement ceux de dimension n-1).
Figure isogonaleEn géométrie, un polytope (un polygone ou un polyèdre, par exemple) est dit isogonal si tous ses sommets sont identiques. Autrement dit, chaque sommet est entouré du même type de face dans le même ordre et avec les mêmes angles entre les faces correspondantes. Plus précisément : le groupe de symétrie du polytope agit transitivement sur l'ensemble des sommets. thumb|Un octogone isogonal convexe et ses quatre axes de symétrie. Tous les polygones réguliers, qu'ils soient convexes ou étoilés, sont isogonaux.
CarréEn géométrie euclidienne, un carré est un quadrilatère convexe à quatre côtés de même longueur avec quatre angles droits. C’est donc un polygone régulier, qui est à la fois un losange, un rectangle, et par conséquent aussi un parallélogramme particulier. Dans le plan, un carré est invariant par quatre symétries axiales, par deux rotations d’angle droit et par une symétrie centrale par rapport à l’intersection de ses diagonales. Les premières représentations du carré datent de la préhistoire.
Pavage hexagonalLe pavage hexagonal est, en géométrie, un pavage du plan euclidien constitué d'hexagones réguliers. C'est l'un des trois pavages réguliers du plan euclidien, avec le pavage carré et le pavage triangulaire. Le pavage hexagonal possède un symbole de Schläfli de {6,3}, signifiant que chaque sommet est entouré par 3 hexagones. Le Théorème du nid d'abeille énonce que le pavage hexagonal régulier est la partition du plan en surfaces égales ayant le plus petit périmètre.
Sommet (géométrie)vignette|droite|Le sommet d'un angle est le point d'intersection où se réunissent deux segments de droites. En géométrie, un sommet est un point particulier d'une figure : un sommet d'un polygone, d'un polyèdre, ou plus généralement d'un polytope, est un 0-simplexe de celui-ci ; c'est l'extrémité d'au moins une arête (par analogie, on parle aussi de sommets en théorie des graphes) ; dans un polyèdre, en chaque sommet, convergent au moins trois faces et un nombre égal d'arêtes (voir aussi le théorème de Descartes-Euler, qui relie le nombre de sommets, d'arêtes et de faces d'un polyèdre) ; le sommet d'un angle est le point d'intersection des deux côtés de cet angle ; le sommet d'un cône est le point d'intersection de toutes les génératrices de ce cône.
Cerf-volant (géométrie)En géométrie, un cerf-volant est un quadrilatère dont une des diagonales est un axe de symétrie (ou — ce qui est équivalent — un quadrilatère formé de deux paires de côtés adjacents égaux). Les diagonales peuvent se couper à l'intérieur (cerf-volant convexe) ou à l'extérieur (« pointe de flèche » ou cerf-volant non convexe). Ceci contraste avec un parallélogramme, où les côtés égaux sont opposés. L'objet géométrique est nommé en référence au cerf-volant que l'on fait voler, qui a, dans son aspect le plus simple, la forme d'un cerf-volant convexe.
Pavage petit rhombitrihexagonalIn geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}. John Conway calls it a rhombihexadeltille. It can be considered a cantellated by Norman Johnson's terminology or an expanded hexagonal tiling by Alicia Boole Stott's operational language. There are three regular and eight semiregular tilings in the plane. There is only one uniform coloring in a rhombitrihexagonal tiling.