In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.
John Conway calls it a rhombihexadeltille. It can be considered a cantellated by Norman Johnson's terminology or an expanded hexagonal tiling by Alicia Boole Stott's operational language.
There are three regular and eight semiregular tilings in the plane.
There is only one uniform coloring in a rhombitrihexagonal tiling. (Naming the colors by indices around a vertex (3.4.6.4): 1232.)
With edge-colorings there is a half symmetry form (3*3) orbifold notation. The hexagons can be considered as truncated triangles, t{3} with two types of edges. It has Coxeter diagram , Schläfli symbol s2{3,6}. The bicolored square can be distorted into isosceles trapezoids. In the limit, where the rectangles degenerate into edges, a triangular tiling results, constructed as a snub triangular tiling, .
There is one related 2-uniform tiling, having hexagons dissected into six triangles. The rhombitrihexagonal tiling is also related to the truncated trihexagonal tiling by replacing some of the hexagons and surrounding squares and triangles with dodecagons:
The rhombitrihexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with four other circles in the packing (kissing number). The translational lattice domain (red rhombus) contains six distinct circles.
There are eight uniform tilings that can be based from the regular hexagonal tiling (or the dual triangular tiling).
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are eight forms, seven topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)
This tiling is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.
This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings. There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face. John Conway called these uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra. Uniform tilings are listed by their vertex configuration, the sequence of faces that exist on each vertex. For example 4.
Le pavage trihexagonal est, en géométrie, un pavage semi-régulier du plan euclidien, constitué de triangles équilatéraux et d'hexagones. Au Japon, ce pavage est utilisé en vannerie sous le nom de Kagomé. En physique, ce pavage est appelé réseau de Kagomé d'après le terme japonais. On l'observe dans la structure cristalline de certains matériaux, notamment l'herbertsmithite. Il est très étudié en magnétisme car sa frustration géométrique génère des phases magnétiques exotiques, comme le liquide de spin. Tri
We show how an extremal Reissner-Nordstrom black hole can be obtained by wrapping a dyonic D3-brane on a Calabi-Yau manifold. In the orbifold limit T-6/Z(3), We explicitly show the correspondence between the solution of the supergravity equations of motion ...
Cao and Yuan obtained a Blichfeldt-type result for the vertex set of the edge-to-edge tiling of the plane by regular hexagons. Observing that the vertex set of every Archimedean tiling is the union of translates of a fixed lattice, we take a more general v ...