Triheptagonal tilingIn geometry, the triheptagonal tiling is a semiregular tiling of the hyperbolic plane, representing a rectified Order-3 heptagonal tiling. There are two triangles and two heptagons alternating on each vertex. It has Schläfli symbol of r{7,3}. Compare to trihexagonal tiling with vertex configuration 3.6.3.6. In geometry, the 7-3 rhombille tiling is a tessellation of identical rhombi on the hyperbolic plane. Sets of three and seven rhombi meet two classes of vertices.
Truncated order-7 triangular tilingIn geometry, the order-7 truncated triangular tiling, sometimes called the hyperbolic soccerball, is a semiregular tiling of the hyperbolic plane. There are two hexagons and one heptagon on each vertex, forming a pattern similar to a conventional soccer ball (truncated icosahedron) with heptagons in place of pentagons. It has Schläfli symbol of t{3,7}. This tiling is called a hyperbolic soccerball (football) for its similarity to the truncated icosahedron pattern used on soccer balls.
Truncated trioctagonal tilingIn geometry, the truncated trioctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one hexagon, and one hexadecagon (16-sides) on each vertex. It has Schläfli symbol of tr{8,3}. The dual of this tiling, the order 3-8 kisrhombille, represents the fundamental domains of [8,3] (*832) symmetry. There are 3 small index subgroups constructed from [8,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
Pavage pentagonalvignette|Les quinze pavages pentagonaux isoédraux possibles. Un pavage pentagonal est, en géométrie, un pavage du plan euclidien par des pentagones. Un pavage du plan uniquement avec des pentagones réguliers n'est pas possible, car l'angle interne du pentagone (108°) ne divise pas un tour complet (360°). En revanche, on peut considérer le dodécaèdre régulier comme un pavage de la sphère par des pentagones réguliers. On connait quinze types de pavages pentagonaux, c'est-à-dire employant un même type de tuile pentagonale convexe.
Coloration uniformelien=//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Square_tiling_uniform_colorings.png/240px-Square_tiling_uniform_colorings.png|vignette|240x240px| Le pavage carré possède 9 colorations uniformes :1111, 1112(a), 1112(b),1122, 1123(a), 1123(b),1212, 1213, 1234. En géométrie, une coloration uniforme est une propriété d'une figure uniforme ( pavage uniforme (en) ou polyèdre uniforme ) qui est colorée pour être isogonale. Différentes symétries peuvent être présentes sur une figure géométrique ayant des faces colorées suivant différents motifs uniformes de couleurs.