Concept

Nilradical

Résumé
En algèbre, le nilradical d'un anneau commutatif est un idéal particulier de cet anneau. Soit A un anneau commutatif. Le nilradical de A est l'ensemble des éléments nilpotents de A. En d'autres termes, c'est l'idéal radical de l'idéal réduit à 0. En notant Nil(A) le nilradical de A, on a les énoncés suivants : Nil(A) est un idéal ; l'anneau quotient A/Nil(A) est réduit, c'est-à-dire qu'il n'a pas d'éléments nilpotents hormis 0 ; Nil(A) est inclus dans chaque idéal premier de A ; si s est un élément de A qui n'appartient pas à Nil(A), alors il existe un idéal premier auquel s n'appartient pas ; si A n'est pas l'anneau nul, Nil(A) est l'intersection de tous les idéaux premiers de A et même, de tous ses . Les preuves des points 4 et 5 reposent sur l'axiome du choix. Démonstrations : Le point méritant justification est la preuve de la stabilité par addition. Soit x et y deux nilpotents, et m, n deux entiers strictement positifs tels que xm = yn = 0. Dans le développement de l'expression (x+y)m+n-1 par la formule du binôme de Newton, chaque terme est alors nul, donc aussi (x+y)m+n-1 = 0 ; Soit un nilpotent de A/Nil(A), projection sur ce quotient d'un x de A, et soit m un entier tel que () = 0.Par définition d'un anneau quotient, xm est donc nilpotent, donc x aussi, donc = 0 dans l'anneau quotient ; Soit x nilpotent, et m tel que xm = 0. En d'autres termes, le produit x.x...x (avec m facteurs tous égaux à x) est nul. Il est donc élément de P. Par définition d'un idéal premier, l'un des facteurs de ce produit doit être dans P, donc x appartient à P ; Soit s ∉ Nil(A), c'est-à-dire s non nilpotent. On note E l'ensemble des idéaux de A qui ne contiennent aucune puissance de s.L'inclusion est un ordre inductif sur E (il est ici important de remarquer que E n'est pas vide car il contient l'idéal réduit à 0 – c'est là qu'on utilise la non-nilpotence de s). D'après le lemme de Zorn, E admet donc un élément maximal. Notons P un tel idéal maximal. On remarque que comme P ne contient aucune puissance de s, P est une partie stricte de A.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.