Bell's spaceship paradoxBell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 but became more widely known after John Stewart Bell elaborated the idea further in 1976. A delicate thread hangs between two spaceships headed in the same direction. They start accelerating simultaneously and equally as measured in the inertial frame S, thus having the same velocity at all times as viewed from S.
Born coordinatesIn relativistic physics, the Born coordinate chart is a coordinate chart for (part of) Minkowski spacetime, the flat spacetime of special relativity. It is often used to analyze the physical experience of observers who ride on a ring or disk rigidly rotating at relativistic speeds, so called Langevin observers. This chart is often attributed to Max Born, due to his 1909 work on the relativistic physics of a rotating body. For overview of the application of accelerations in flat spacetime, see Acceleration (special relativity) and proper reference frame (flat spacetime).
Proper accelerationIn relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.
Acceleration (special relativity)Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor (which is mainly determined by mass).
Paradoxe d'EhrenfestLe paradoxe d'Ehrenfest est un paradoxe constaté dans l'étude des repères tournants et plus spécialement ici dans l'étude des disques tournants. Lorsque l'on prend en compte la relativité restreinte on constate que la géométrie semble différente dans le repère inertiel et dans le repère tournant alors qu'il s'agit du même espace physique. Ce paradoxe permet de mettre en évidence que la notion de corps rigide est en général incompatible avec la relativité restreinte.
Contraction des longueursEn relativité restreinte, la contraction des longueurs désigne la loi suivant laquelle la mesure de la longueur d'un objet en mouvement est diminuée par rapport à la mesure faite dans le référentiel où l'objet est immobile, du fait, notamment, de la relativité de la simultanéité d'un référentiel à l'autre. Toutefois, seule la mesure de la longueur parallèle à la vitesse est contractée, les mesures perpendiculaires à la vitesse ne changent pas d'un référentiel à l'autre. En relativité générale, une contraction des longueurs est aussi prédite.
Rindler coordinatesRindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame.
Relativité restreinteLa relativité restreinte est la théorie élaborée par Albert Einstein en 1905 en vue de tirer toutes les conséquences physiques de la relativité galiléenne et du principe selon lequel la vitesse de la lumière dans le vide a la même valeur dans tous les référentiels galiléens (ou inertiels), ce qui était implicitement énoncé dans les équations de Maxwell (mais interprété bien différemment jusque-là, avec « l'espace absolu » de Newton et léther).