Résumé
In physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity. If a physical theory is independent of the choice of local frames, the group of local frame changes, the gauge transformations, act on the fields in the theory while leaving unchanged the physical content of the theory. Ordinary differentiation of field components is not invariant under such gauge transformations, because they depend on the local frame. However, when gauge transformations act on fields and the gauge covariant derivative simultaneously, they preserve properties of theories that do not depend on frame choice and hence are valid descriptions of physics. Like the covariant derivative used in general relativity (which is special case), the gauge covariant derivative is an expression for a connection in local coordinates after choosing a frame for the fields involved, often in the form of index notation. There are many ways to understand the gauge covariant derivative. The approach taken in this article is based on the historically traditional notation used in many physics textbooks. Another approach is to understand the gauge covariant derivative as a kind of connection, and more specifically, an affine connection. The affine connection is interesting because it does not require any concept of a metric tensor to be defined; the curvature of an affine connection can be understood as the field strength of the gauge potential. When a metric is available, then one can go in a different direction, and define a connection on a frame bundle. This path leads directly to general relativity; however, it requires a metric, which particle physics gauge theories do not have.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.