In mathematics, a locally constant function is a function from a topological space into a set with the property that around every point of its domain, there exists some neighborhood of that point on which it restricts to a constant function.
Let be a function from a topological space into a set
If then is said to locally constant at if there exists a neighborhood of such that is constant on which by definition means that for all
The function is called locally constant if it is locally constant at every point in its domain.
Every constant function is locally constant. The converse will hold if its domain is a connected space.
Every locally constant function from the real numbers to is constant, by the connectedness of But the function from the rationals to defined by and is locally constant (this uses the fact that is irrational and that therefore the two sets and are both open in ).
If is locally constant, then it is constant on any connected component of The converse is true for locally connected spaces, which are spaces whose connected components are open subsets.
Further examples include the following:
Given a covering map then to each point we can assign the cardinality of the fiber over ; this assignment is locally constant.
A map from a topological space to a discrete space is continuous if and only if it is locally constant.
There are of locally constant functions on To be more definite, the locally constant integer-valued functions on form a sheaf in the sense that for each open set of we can form the functions of this kind; and then verify that the sheaf hold for this construction, giving us a sheaf of abelian groups (even commutative rings). This sheaf could be written ; described by means of we have stalk a copy of at for each This can be referred to a , meaning exactly taking their values in the (same) group. The typical sheaf of course is not constant in this way; but the construction is useful in linking up sheaf cohomology with homology theory, and in logical applications of sheaves.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, certains foncteurs peuvent être dérivés pour obtenir de nouveaux foncteurs liés de manière naturelle par des morphismes à ceux de départs. Cette notion abstraite permet d'unifier des constructions concrètes intervenant dans de nombreux domaines des mathématiques. Elle n'est pas liée à la notion de dérivation en analyse. La notion de foncteur dérivé est conçue pour donner un cadre général aux situations où une suite exacte courte donne naissance à une suite exacte longue.
En mathématiques, un faisceau est un outil permettant de suivre systématiquement des données définies localement et rattachées aux ouverts d'un espace topologique. Les données peuvent être restreintes à des ouverts plus petits, et les données correspondantes à un ouvert sont équivalentes à l'ensemble des données compatibles correspondantes aux ouverts plus petits couvrant l'ouvert d'origine. Par exemple, de telles données peuvent consister en des anneaux de fonctions réelles continues ou lisses définies sur chaque ouvert.
K-Theory was originally defined by Grothendieck as a contravariant functor from a subcategory of schemes to abelian groups, known today as K0. The same kind of construction was then applied to other fields of mathematics, like spaces and (not necessarily c ...