En mathématiques, certains foncteurs peuvent être dérivés pour obtenir de nouveaux foncteurs liés de manière naturelle par des morphismes à ceux de départs. Cette notion abstraite permet d'unifier des constructions concrètes intervenant dans de nombreux domaines des mathématiques. Elle n'est pas liée à la notion de dérivation en analyse.
La notion de foncteur dérivé est conçue pour donner un cadre général aux situations où une suite exacte courte donne naissance à une suite exacte longue.
Soit donné un foncteur F : A → B entre deux catégories abéliennes A et B. On suppose que F est exact à gauche, c'est-à-dire que pour une suite exacte courte d'objets de la catégorie A :
alors la suite suivante est exacte :
Il est alors naturel de se demander si on peut prolonger cette suite en une suite exacte, et si on peut le faire de façon canonique. Les foncteurs dérivés du foncteur F seront alors, pour tout i ≥ 1, les foncteurs RiF : A → B, tels que la suite suivante soit exacte :
F est donc exact à droite si et seulement si le foncteur R1F est trivial. Les foncteurs dérivés mesurent donc dans un certain sens le défaut d'exactitude de F.
On suppose que la catégorie A possède suffisamment d' — une abstraction de la notion de module injectif — c'est-à-dire que pour tout objet A dans A il existe un monomorphisme où I est un objet injectif dans A.
Soit un foncteur covariant exact à gauche F : A → B et un objet X dans A. Par l'hypothèse sur A, on peut construire une injective de X (i.e. une suite exacte longue où les Ii pour i ≥ 0 sont des objets injectifs) :
En appliquant le foncteur F, on obtient le complexe de cochaînes
La cohomologie au i-ème rang est alors définie comme étant RiF(X). En particulier : R0F(X) = F(X). Pour obtenir une démonstration complète, il faudrait vérifier les points suivants : le résultat ne dépend pas, à isomorphisme près, du choix de la résolution injective de X, et pour chaque flèche X → Y il existe une flèche RiF(X) → RiF(Y) qui fasse que RiF vérifie les propriétés des foncteurs.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
In mathematics, a locally constant function is a function from a topological space into a set with the property that around every point of its domain, there exists some neighborhood of that point on which it restricts to a constant function. Let be a function from a topological space into a set If then is said to locally constant at if there exists a neighborhood of such that is constant on which by definition means that for all The function is called locally constant if it is locally constant at every point in its domain.
Les foncteurs Ext sont les foncteurs dérivés du foncteur Hom. Ils sont d'abord apparus en algèbre homologique, où ils jouent un rôle central par exemple dans le théorème des coefficients universels, mais interviennent aujourd'hui dans de nombreuses branches différentes des mathématiques. Ce foncteur apparaît originellement dans l'étude des extensions de modules, d'où il tire son nom. Soit A une catégorie abélienne. D'après le théorème de plongement de Mitchell, on peut toujours imaginer travailler avec une catégorie de modules.
Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
We develop an algorithm to solve the bottleneck assignment problem (BAP) that is amenable to having computation distributed over a network of agents. This consists of exploring how each component of the algorithm can be distributed, with a focus on one com ...