Concept

Brahmagupta

Résumé
Brahmagupta (ब्रह्मगुप्त) (Multân, 598–670) est un mathématicien et astronome indien. Brahmagupta est l'un des plus importants mathématiciens tant de l'Inde que de son époque. On lui connait deux ouvrages majeurs : le Brāhmasphuṭasiddhānta (ब्राह्मस्फुटसिद्धान्त) en 628 et le Khandakhâdyaka en 665. Il dirige l'observatoire astronomique d'Ujjain, ville qui est au un centre majeur de recherches en mathématique. C'est dans son premier ouvrage le Brahmasphutasiddhanta, qu'il définit le zéro comme résultat de la soustraction d'un nombre par lui-même, qu'il décrit les résultats d'opérations avec ce nouveau nombre, mais se « trompe » en donnant comme résultat zéro à 0/0. En revanche, il donne des règles correctes sur les signes lors d'opérations entre entiers relatifs (profits et pertes). Il donne aussi dans cet ouvrage la solution de l'équation générale de . Brahmagupta fut le premier mathématicien à utiliser l'algèbre pour résoudre des problèmes astronomiques. Il proposa comme durée de l'année tropique : , 6 heures, 5 minutes, et , lors d'une première estimation. Dans son deuxième livre le Khandakhâdyaka, il propose , 6 heures, et . La vraie longueur des années est d'un peu moins de et 6 heures. Omar Khayyam parviendra trois siècles plus tard à calculer une valeur d'une telle précision que son changement se mesure dans l'espace de quelques vies humaines (la Terre ralentit très lentement, mais irréversiblement, en raison des frottements des marées). Brahmagupta est né vers 598 à Bhillamala (), au Rajasthan, dans le nord-ouest de l'Inde. À cette époque, Bhillamala est la capitale du Gujarat et le siège du pouvoir des Gurjars. Son père s'appelle Jishnugupta et est marchand ou agriculteur. Il reçoit une éducation hindouiste orthodoxe vers 610-620, s'initie aux textes scientifiques grecs ainsi qu'aux écrits d'Aryabhata et Varahamihira vers 620-627. Ses traités sont imprégnés de ces différentes sources, mais les modifient et corrigent leurs erreurs. Il adhère à l'école astronomique Brahmapaksa.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.