Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les défis et les perspectives en matière de protection des données dans la recherche sur la cybersanté, en mettant l'accent sur la conformité au RGPD, la gestion sensible des données de santé et les agents décentralisés.
Couvre le passage de contexte par rapport aux classes de type, les contextes d'exécution, l'inviolabilité et l'importance de la spécificité dans Scala.
Explore les défis de l'apprentissage profond et des applications d'apprentissage automatique, couvrant la surveillance, la confidentialité, la manipulation, l'équité, l'interprétabilité, l'efficacité énergétique, les coûts et la généralisation.
Explore les techniques permettant d'assurer la confidentialité des données tout en partageant l'information et le compromis entre la confidentialité et l'exactitude des données.
Explore les mécanismes de publication de données préservant la vie privée et introduit le concept de confidentialité différentielle pour protéger les données individuelles tout en fournissant des statistiques précises.
Explore les techniques de confidentialité des données comme la confidentialité différentielle et l'anonymat k, assurant l'insignifiance statistique pour les bases de données voisines.
Explore l'apprentissage automatique fédéré et la confidentialité différentielle dans l'apprentissage automatique, en discutant des attaques, des défenses et des défis.
Examine la définition, les objectifs et les implications des frontières intelligentes, y compris les préoccupations relatives à la confidentialité des données et l'impact sur les droits des migrants.