Concept

J-homomorphism

In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by , extending a construction of . Whitehead's original homomorphism is defined geometrically, and gives a homomorphism of abelian groups for integers q, and . (Hopf defined this for the special case .) The J-homomorphism can be defined as follows. An element of the special orthogonal group SO(q) can be regarded as a map and the homotopy group ) consists of homotopy classes of maps from the r-sphere to SO(q). Thus an element of can be represented by a map Applying the Hopf construction to this gives a map in , which Whitehead defined as the image of the element of under the J-homomorphism. Taking a limit as q tends to infinity gives the stable J-homomorphism in stable homotopy theory: where is the infinite special orthogonal group, and the right-hand side is the r-th stable stem of the stable homotopy groups of spheres. The of the J-homomorphism was described by , assuming the Adams conjecture of which was proved by , as follows. The group is given by Bott periodicity. It is always cyclic; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 modulo 4, and order 1 otherwise . In particular the image of the stable J-homomorphism is cyclic. The stable homotopy groups are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant , a homomorphism from the stable homotopy groups to . If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J-homomorphism is injective). If r is 3 mod 4, the image is a cyclic group of order equal to the denominator of , where is a Bernoulli number. In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because is trivial.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.