The sine-Gordon equation is a nonlinear hyperbolic partial differential equation for a function dependent on two variables typically denoted and , involving the wave operator and the sine of . It was originally introduced by in the course of study of surfaces of constant negative curvature as the Gauss–Codazzi equation for surfaces of constant Gaussian curvature −1 in 3-dimensional space. The equation was rediscovered by in their study of crystal dislocations known as the Frenkel–Kontorova model. This equation attracted a lot of attention in the 1970s due to the presence of soliton solutions, and is an example of an integrable PDE. Among well-known integrable PDEs, the sine-Gordon equation is the only relativistic system due to its Lorentz invariance. There are two equivalent forms of the sine-Gordon equation. In the (real) space-time coordinates, denoted , the equation reads: where partial derivatives are denoted by subscripts. Passing to the light-cone coordinates (u, v), akin to asymptotic coordinates where the equation takes the form This is the original form of the sine-Gordon equation, as it was considered in the 19th century in the course of investigation of surfaces of constant Gaussian curvature K = −1, also called pseudospherical surfaces. There is a distinguished coordinate system for such a surface in which the coordinate mesh u = constant, v = constant is given by the asymptotic lines parameterized with respect to the arc length. The first fundamental form of the surface in these coordinates has a special form where expresses the angle between the asymptotic lines, and for the second fundamental form, . Then the Gauss–Codazzi equation expressing a compatibility condition between the first and second fundamental forms results in the sine-Gordon equation. This analysis shows that any pseudospherical surface gives rise to a solution of the sine-Gordon equation, although with some caveats: if the surface is complete, it is necessarily singular due to the Hilbert embedding theorem.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.