Champ gravitationnelEn physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l'espace et dû à la présence d'une masse susceptible d'exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L'introduction de cette grandeur permet de s'affranchir du problème de la médiation de l'action à distance apparaissant dans l'expression de la force de gravitation universelle.
Gravity of EarthThe gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm . In SI units this acceleration is expressed in metres per second squared (in symbols, m/s2 or m·s−2) or equivalently in newtons per kilogram (N/kg or N·kg−1).
Centre d'inertieLe centre d'inertie d'un objet, ou centre de masse, est le point de l'espace où l'on applique les effets d'inertie, c'est-à-dire le vecteur variation de quantité de mouvement . Si la masse du système est constante, ce que nous supposerons pour simplifier par la suite, alors , étant l'accélération. C'est aussi le point où l'on applique le vecteur force d'inertie résultant de l'accélération d'entraînement dans le cas d'un référentiel non galiléen.
Proper accelerationIn relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.
Gravité de surfaceEn astronomie, la gravité de surface est l'intensité du champ gravitationnel à la surface d'un objet astrophysique (planète, étoile ou autre). Ce concept est également utilisé, quoique de façon légèrement différente, dans la physique des trous noirs où il règle la vitesse à laquelle le champ gravitationnel au sens classique du terme diverge à l'approche de la surface du trou noir, c'est-à-dire de son horizon. En physique stellaire et substellaire (naines brunes, exoplanètes massives), l'usage est d'utiliser le logarithme décimal de la valeur exprimée dans le système CGS (cm/s2).
Vitesse de libérationLa vitesse de libération, ou vitesse d'évasion ou d'échappement est, en physique, la vitesse minimale que doit atteindre un projectile pour échapper définitivement à l'attraction gravitationnelle d'un astre (planète, étoile, etc.) dépourvu d'atmosphère et s'en éloigner indéfiniment. Cette vitesse est d'autant plus importante que la masse de l'astre est importante et que l'objet est proche de son centre. Relative à l'astre, c'est une valeur scalaire (sa direction ne joue aucun rôle).
Force centripèteLe terme force centripète (« qui tend à rapprocher du centre », en latin) désigne une force permettant de maintenir un objet dans une trajectoire incurvée, généralement une conique (cercle, ellipse, parabole, hyperbole). En effet, tout objet décrivant une trajectoire de ce type possède en coordonnées cylindriques une accélération radiale non nulle, appelée accélération centripète, qui est dirigée vers le centre de courbure. D'un point de vue dynamique, le principe fondamental de la dynamique (PFD) indique alors la présence d'une force radiale dirigée elle aussi vers le centre de courbure.
Equations for a falling bodyA set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions. Assuming constant acceleration g due to Earth’s gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth’s gravitational field of strength g. Assuming constant g is reasonable for objects falling to Earth over the relatively short vertical distances of our everyday experience, but is not valid for greater distances involved in calculating more distant effects, such as spacecraft trajectories.