Résumé
Le terme force centripète (« qui tend à rapprocher du centre », en latin) désigne une force permettant de maintenir un objet dans une trajectoire incurvée, généralement une conique (cercle, ellipse, parabole, hyperbole). En effet, tout objet décrivant une trajectoire de ce type possède en coordonnées cylindriques une accélération radiale non nulle, appelée accélération centripète, qui est dirigée vers le centre de courbure. D'un point de vue dynamique, le principe fondamental de la dynamique (PFD) indique alors la présence d'une force radiale dirigée elle aussi vers le centre de courbure. Cette force est au sens de Newton une force réelle, qui pourra avoir diverses origines, par exemple : force de gravitation (mouvement des planètes) ; force de tension (mouvement circulaire d'une masse accrochée à un fil tendu dont l'autre extrémité est généralement fixe ou presque). Sans force centripète, l'objet ne peut pas tourner ou cesse de tourner. Dans l'illustration ci-contre, si le fil casse, la balle cesse de tourner et poursuit par simple inertie un mouvement rectiligne, tangent à son ancienne trajectoire circulaire. Ce point de vue est celui d'un observateur situé en dehors du dispositif tournant (comme le lecteur qui regarde le schéma — ce repère est galiléen). Pour un observateur situé au centre de rotation et tournant avec lui (le repère est alors non galiléen) l'éjection de la balle est perçue différemment, comme l'effet d'une force dite force centrifuge (la force centrifuge est dite fictive car elle n'intervient que dans le repère en rotation, pour interpréter un effet subjectif). Dans un référentiel galiléen un corps isolé possède, s'il est en mouvement, un mouvement rectiligne uniforme (uniforme: vitesse constante). Lui faire parcourir une trajectoire elliptique revient à le dévier constamment, et donc à lui appliquer à tout instant une force dirigée vers le centre de courbure. Cette force est alors qualifiée de centripète. Le caractère centripète d'une force n'est pas intrinsèque, mais lui est conféré par son effet sur la trajectoire de l'objet.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.