Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the problem of learning multi-ridge functions of the form f (x) = g(Ax) from point evaluations of f. We assume that the function f is defined on an l(2)-ball in R-d, g is twice continuously differentiable almost everywhere, and A is an element ...
We present a dynamic network loading model that yields queue length distributions, accounts for spillbacks, and maintains a differentiable mapping from the dynamic demand on the dynamic queue lengths. The approach builds upon an existing stationary queuein ...
In a recent article series, the authors have promoted convex optimization algorithms for radio-interferometric imaging in the framework of compressed sensing, which leverages sparsity regularization priors for the associated inverse problem and defines a m ...
In this work we discuss the Dynamically Orthogonal (DO) approximation of time dependent partial differential equations with random data. The approximate solution is expanded at each time instant on a time dependent orthonormal basis in the physical domain ...
We study the problem of learning ridge functions of the form f(x) = g(aT x), x ∈ ℝd, from random samples. Assuming g to be a twice continuously differentiable function, we leverage techniques from low rank matrix recovery literature to derive a uniform app ...
We consider the problem of actively learning \textit{multi-index} functions of the form f(x)=g(Ax)=∑i=1kgi(aiTx) from point evaluations of f. We assume that the function f is defined on an ℓ2-ball in \Reald, g is twice contin ...
In this study, we address the problem of computing efficiently a dense optical flow between two images under a total variation (TV) regularization and an L1 norm data fidelity constraint using a variational method. We build upon Nesterov's framework for ...