Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Magnetochemistry is concerned with the magnetic properties of chemical compounds. Magnetic properties arise from the spin and orbital angular momentum of the electrons contained in a compound. Compounds are diamagnetic when they contain no unpaired electrons. Molecular compounds that contain one or more unpaired electrons are paramagnetic. The magnitude of the paramagnetism is expressed as an effective magnetic moment, μeff. For first-row transition metals the magnitude of μeff is, to a first approximation, a simple function of the number of unpaired electrons, the spin-only formula. In general, spin–orbit coupling causes μeff to deviate from the spin-only formula. For the heavier transition metals, lanthanides and actinides, spin–orbit coupling cannot be ignored. Exchange interaction can occur in clusters and infinite lattices, resulting in ferromagnetism, antiferromagnetism or ferrimagnetism depending on the relative orientations of the individual spins. Magnetic susceptibility The primary measurement in magnetochemistry is magnetic susceptibility. This measures the strength of interaction on placing the substance in a magnetic field. The volume magnetic susceptibility, represented by the symbol is defined by the relationship where, is the magnetization of the material (the magnetic dipole moment per unit volume), measured in amperes per meter (SI units), and is the magnetic field strength, also measured in amperes per meter. Susceptibility is a dimensionless quantity. For chemical applications the molar magnetic susceptibility (χmol) is the preferred quantity. It is measured in m3·mol−1 (SI) or cm3·mol−1 (CGS) and is defined as where ρ is the density in kg·m−3 (SI) or g·cm−3 (CGS) and M is molar mass in kg·mol−1 (SI) or g·mol−1 (CGS). A variety of methods are available for the measurement of magnetic susceptibility. With the Gouy balance the weight change of the sample is measured with an analytical balance when the sample is placed in a homogeneous magnetic field.
Dragan Damjanovic, Ke Wang, Xiaolong Li
Simon Nessim Henein, Florent Cosandier, Hubert Pierre-Marie Benoît Schneegans, Patrick Robert Flückiger