Concept

École du Kerala

Résumé
thumb|Région du Kerala, Inde L’école du Kerala est une école de mathématiques et d'astronomie fondée par Madhava de Sangamagrama dans la province du Kerala en Inde, et ayant eu entre autres pour membres et Nilakantha Somayaji. Elle prospéra entre le et le , s'achevant avec les travaux de Melpathur Narayana Bhattathiri. Les découvertes mathématiques de l'école anticipent de deux siècles certains des résultats du calcul infinitésimal de Newton et Leibniz (mais non leurs techniques), obtenant par exemple le développement en série entière des fonctions trigonométriques, mais il n'y a pas de preuve que ces découvertes se soient diffusées en dehors du Kerala. thumb|L'école du Kerala Il a existé sans interruption dans la région du Kerala une grande activité scientifique depuis l'époque d'Aryabhata, mais elle prend une ampleur particulière avec l'arrivée de Madhava de Sangamagrama et la création de son « école » - un système de transmission de savoir de maîtres à élèves à l'intérieur d'. Cette école eut entre autres pour membres Parameshvara, Nilakantha Somayaji, , , et Melpathur Narayana Bhattathiri. Elle prospéra entre le et le , ses dernières contributions originales étant apportées par les travaux de Narayana Bhattathiri (1559-1632). Pour tenter de résoudre des problèmes astronomiques, l'école du Kerala développa de nouveaux concepts mathématiques ; leurs résultats les plus importants — le développement en séries des fonctions trigonométriques — furent décrits en vers sanskrits dans un livre de Nilakantha appelé Tantrasangraha, et dans un commentaire de ce livre, le Tantrasangraha-vakhya, d'auteur inconnu. Ces théorèmes étaient énoncés sans démonstrations ; des justifications des séries pour les fonctions sinus, cosinus et arc tangente furent données un siècle plus tard dans le Yuktibhasa (c.1500-c.1610), écrit en malayalam par Jyesthadeva, ainsi que dans un commentaire du Tantrasangraha. Ces travaux, achevés deux siècles avant la découverte du calcul infinitésimal en Europe, contiennent les premiers exemples connus de séries entières (en dehors des séries géométriques).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.