Nucléase effectrice de type activateur de transcription
Résumé
Décrits pour la première fois en 2009, une nucléase effectrice de type activateur de transcription transcription activator-like effector nuclease (TALEN) est une enzyme de restriction artificielle générée par fusion d'un domaine de liaison à l'ADN, appelé TALE, avec un domaine ayant la capacité de cliver l'ADN.
Les enzymes de restriction sont des enzymes qui ont la capacité de couper l'ADN au niveau d'une séquence spécifique. Les Transcription activator-like effectors (TALEs, effecteurs de type activateur de transcription) peuvent être rapidement conçus pour se fixer à quasiment n'importe quelle séquence d'ADN voulue. En combinant un domaine TALE avec un domaine de clivage de l'ADN (qui va couper le brin d'ADN), on peut ainsi créer des enzymes de restriction spécifiques pour n'importe quelle séquence d'ADN. Quand ces enzymes sont introduites dans les cellules, elles peuvent alors être utilisées pour modifier le génome in situ.
Les TAL effector (TALE) sont des protéines sécrétées par la bactérie Xanthomonas. Le domaine de liaison à l'ADN est constitué de répétitions de 33 ou 34 acides-aminés identiques à l'exception des acides aminés 12 et 13. Ces deux résidus sont très variables et montrent une forte corrélation avec la reconnaissance d'un nucléotide spécifique. Cette relation simple entre la séquence en acides-aminés et la reconnaissance de l'ADN permet de créer des domaines de liaison à l'ADN spécifiques d'une séquence en sélectionnant un assemblage de segments répétés contenant les résidus variables appropriés.
Le domaine de clivage de l'ADN non spécifique de l'endonucléase Fok1 peut être utilisé pour construire des nucléases hybrides qui ont prouvé leur efficacité dans des essais chez la levure. Ces protéines sont aussi actives dans les cellules végétales et animales. Les premières études sur les TALEN ont été réalisées avec le domaine original de Fok1, mais des approches plus récentes, utilisent des domaines portant des mutations spécialement pensées pour augmenter la spécificité et l'efficacité du clivage de l'ADN.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
Chemical biology is a key discipline in biomedical research for drug discovery, synthetic biology and protein functional annotation. We will give a broad perspective of the field ranging from seminal
alt=|vignette|295x295px|Schéma général du processus de modification localisée du génome. L'édition génomique ou modification localisée de séquence génomique (genome editing pour les anglophones) regroupe un ensemble de techniques de manipulation du génome visant à la modification du matériel (et donc de l'information) génétique. Ces techniques sont plus précises et ciblées que les techniques OGM historiques qui consistent à modifier ces organismes par transgenèse, procédé qui introduit un fragment d'ADN exogène à un emplacement aléatoire du génome.
thumb|236px|Une structure du Cas9 de S. aureus dans un complexe avec un ARN guide (haut) et son ADN cible (bas). Cas9 (en) est une protéine d'origine bactérienne aux propriétés anti-virales. Sa capacité à couper l'ADN au niveau de séquences spécifiques en a fait un outil de biologie moléculaire aux vastes perspectives d'utilisation. C'est une endonucléase d'ADN guidée par ARN, c'est-à-dire une enzyme spécialisée pour couper l'ADN avec deux zones de coupe actives, une pour chaque brin de la double hélice.
Le génie génétique est l'ensemble des outils permettant de modifier la constitution génétique d'un organisme en supprimant, en introduisant ou en remplaçant de l'ADN. Celui-ci peut être introduit directement dans les cellules de l'organisme hôte ou dans des cellules cultivées ex vivo puis réintroduites dans l'organisme. Un prérequis au développement du génie génétique a été la mise au point de techniques recombinantes d'acide nucléique pour former de nouvelles combinaisons de matériel génétique héritable suivies de l'incorporation de ce matériel soit indirectement à travers un système vecteur ou directement par microinjection, macroinjection ou microencapsulation.
Couvre l'évaluation de la stabilité des protéines en utilisant RFP et GFP, la cytométrie de flux, la mutagénèse, les rapporteurs de calcium et les expériences CRISPR-Cas9.
Explore les applications du CRISPR-Cas dans l'édition de génomes, en mettant l'accent sur l'ingénierie des génomes bactériens, la guérison des maladies génétiques, guide la simplicité de l'ARN, la spécificité du Cas9, les mécanismes de dommages à l'ADN et l'édition de base.
Explore la biologie synthétique, la technologie CRISPR, le ciblage programmable d'ARN et l'édition du génome, en mettant l'accent sur le diagnostic basé sur CRISPR et les technologies d'ARN de précision.
DNA-binding proteins physically interact with the DNA and directly affect genomic functions. The eukaryotic genome is compacted into chromatin, limiting the DNA access to nuclear factors. In this Ph.D. thesis, I explored the dynamic mechanisms, that allow ...
Viruses initiate invasion by binding to cell surface glycoproteins. Materials mimicking the carbohydrate motifs of these glycoproteins, such as heparan sulfate (HS) and sialic acid (SA) can block viral attachment and inhibit the infection. Multivalent disp ...
EPFL2023
,
Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degrad ...