In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
Lie algebroids play a similar same role in the theory of Lie groupoids that Lie algebras play in the theory of Lie groups: reducing global problems to infinitesimal ones. Indeed, any Lie groupoid gives rise to a Lie algebroid, which is the vertical bundle of the source map restricted at the units. However, unlike Lie algebras, not every Lie algebroid arises from a Lie groupoid.
Lie algebroids were introduced in 1967 by Jean Pradines.
A Lie algebroid is a triple consisting of
a vector bundle over a manifold
a Lie bracket on its space of sections
a morphism of vector bundles , called the anchor, where is the tangent bundle of
such that the anchor and the bracket satisfy the following Leibniz rule:
where and is the derivative of along the vector field .
One often writes when the bracket and the anchor are clear from the context; some authors denote Lie algebroids by , suggesting a "limit" of a Lie groupoids when the arrows denoting source and target become "infinitesimally close".
It follows from the definition that
for every , the kernel is a Lie algebra, called the isotropy Lie algebra at
the kernel is a (not necessarily locally trivial) bundle of Lie algebras, called the isotropy Lie algebra bundle
the image is a singular distribution which is integrable, i.e. its admits maximal immersed submanifolds , called the orbits, satisfying for every . Equivalently, orbits can be explicitly described as the sets of points which are joined by A-paths, i.e. pairs of paths in and in such that and
the anchor map descends to a map between sections which is a Lie algebra morphism, i.e.
for all .
The property that induces a Lie algebra morphism was taken as an axiom in the original definition of Lie algebroid. Such redundancy, despite being known from an algebraic point of view already before Pradine's definition, was noticed only much later.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In differential geometry, a discipline within mathematics, a distribution on a manifold is an assignment of vector subspaces satisfying certain properties. In the most common situations, a distribution is asked to be a vector subbundle of the tangent bundle . Distributions satisfying a further integrability condition give rise to foliations, i.e. partitions of the manifold into smaller submanifolds. These notions have several applications in many fields of mathematics, e.g.
Le théorème de Frobenius donne une condition nécessaire et suffisante d'intégrabilité locale d'un système d'équations aux dérivées partielles du premier ordre dont le membre de droite dépend des variables, des inconnues, mais ne dépend pas de dérivées partielles de ces inconnues : un tel système d'équations aux dérivées partielles est appelé un « système de Pfaff ». Les fonctions du second membre sont supposées seulement de classe , ce qui rend impossible l'application du théorème de Cauchy-Kowalevski, qui suppose ces fonctions analytiques.
En mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
We report recent results of a non-perturbative determination of the static heavy-quark potential in quenched and dynamical lattice QCD at finite temperature. The real and imaginary part of this complex quantity are extracted from the spectral function of W ...
A theorem of Drinfel'd (Drinfel'd (1993)) classifies the Poisson homogeneous spaces of a Poisson Lie group (G,πG) via a special class of Lagrangian subalgebras of the Drinfel'd double of its Lie bialgebra. This result is extended in Liu et al. (1998) to a ...
This paper completes a proof of the Dirac reduction theorem by involutive tangent subbundles. As a consequence, Dirac reduction by a proper Lie group action having one isotropy type is carried out. The main technical tool in the proof is the notion of part ...