A "production system " (or "production rule system") is a computer program typically used to provide some form of artificial intelligence, which consists primarily of a set of rules about behavior but it also includes the mechanism necessary to follow those rules as the system responds to states of the world. Those rules, termed productions, are a basic representation found useful in automated planning, expert systems and action selection.
Productions consist of two parts: a sensory precondition (or "IF" statement) and an action (or "THEN"). If a production's precondition matches the current state of the world, then the production is said to be triggered. If a production's action is executed, it is said to have fired. A production system also contains a database, sometimes called working memory, which maintains data about current state or knowledge, and a rule interpreter. The rule interpreter must provide a mechanism for prioritizing productions when more than one is triggered.
Rule interpreters generally execute a forward chaining algorithm for selecting productions to execute to meet current goals, which can include updating the system's data or beliefs. The condition portion of each rule (left-hand side or LHS) is tested against the current state of the working memory.
In idealized or data-oriented production systems, there is an assumption that any triggered conditions should be executed: the consequent actions (right-hand side or RHS) will update the agent's knowledge, removing or adding data to the working memory. The system stops processing either when the user interrupts the forward chaining loop; when a given number of cycles has been performed; when a "halt" RHS is executed, or when no rules have LHSs that are true.
Real-time and expert systems, in contrast, often have to choose between mutually exclusive productions --- since actions take time, only one action can be taken, or (in the case of an expert system) recommended.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A business rules engine is a software system that executes one or more business rules in a runtime production environment. The rules might come from legal regulation ("An employee can be fired for any reason or no reason but not for an illegal reason"), company policy ("All customers that spend more than $100 at one time will receive a 10% discount"), or other sources. A business rule system enables these company policies and other operational decisions to be defined, tested, executed and maintained separately from application code.
L'algorithme de Rete est un algorithme performant de filtrage par motif (« pattern matching ») intervenant dans l'implémentation de systèmes de règles de production. L'algorithme a été conçu par Charles L. Forgy de l'université Carnegie-Mellon, tout d'abord publié comme une note de travail en 1974, puis plus tard élaboré dans sa thèse de doctorat en 1979 et dans une publication de 1982. Rete est devenu la base de nombreux systèmes experts tels que Clips, Jess, Drools, Ilog JRules, Soar...
Le chaînage avant est une méthode de déduction qui applique des règles en partant des prémisses pour en déduire de nouvelles conclusions. Ces conclusions enrichissent la mémoire de travail et peuvent devenir les prémisses d'autres règles. Par opposition, le chaînage arrière part des conclusions pour essayer de « remonter » aux axiomes. Le chaînage avant est utilisé en intelligence artificielle, dans un système expert à base de règles, dans un moteur de règles, ou encore dans un système de production.
Déplacez-vous dans la chronologie historique des thérapies contre le cancer et l'émergence des plateformes d'immuno-oncologie.
Defining and identifying duplicate records in a dataset is a challenging task which grows more complex when the modeled entities themselves are hard to delineate. In the geospatial domain, it may not be clear where a mountain, stream, or valley ends and be ...
2019
Architects are increasingly using digital tools during the design process, particularly as they approach complex problems such as designing for successful daylighting performance. However, while simulation tools may provide the designer with valuable infor ...
2011
, ,
We study the fundamental problem of learning an unknown, smooth probability function via pointwise Bernoulli tests. We provide a scalable algorithm for efficiently solving this problem with rigorous guarantees. In particular, we prove the convergence rate ...