Concept

Polynôme d'Ehrhart

Résumé
En mathématiques, on associe à un polytope entier (c'est-à-dire à un polytope convexe dont les coordonnées des sommets sont entières) son polynôme d'Ehrhart (étudié par vers 1960), lequel décrit une relation entre le volume du polytope et le nombre des points à coordonnées entières qu'il contient. La théorie de ces polynômes peut être vue comme une généralisation du théorème de Pick en dimensions supérieures. L'idée de la construction de Ehrhart est de considérer comme fonction de t le nombre de points entiers intérieurs à un polytope obtenu par homothétie par un facteur t du polytope étudié. Plus précisément, soit un réseau de l'espace euclidien et un polytope P de dont tous les sommets sont des points du réseau (par exemple , on utilise fréquemment le réseau et des polytopes dont tous les sommets ont des coordonnées entières), engendrant un sous-espace affine de dimension d (d est appelé la dimension de P). Pour tout entier positif t, soit tP le polytope obtenu par dilatation de P par un facteur t, c'est-à-dire le polytope obtenu en multipliant par t les coordonnées de tous les sommets (exprimés dans une base du réseau, et soit le nombre de points du réseau contenus dans le polytope tP. montra en 1962 que L est un polynôme en t de degré d, c'est-à-dire qu'il existe des nombres rationnels tels que pour tout entier t. Le polynôme d'Ehrhart de l'intérieur d'un polytope convexe P de dimension d vérifie résultat connu sous le nom de réciprocité d'Ehrhart–Macdonald. Soit P un hypercube unité de dimension d, dont les sommets sont les points dont toutes les coordonnées valent 0 ou 1, autrement dit La dilatation de P par t est un hypercube de côté t, contenant (t + 1)d points entiers, et donc le polynôme d'Ehrhart de P est L(P,t) = (t + 1)d. On voit aussi qu'aux entiers négatifs, on a comme le prédit la réciprocité d'Ehrhart–Macdonald. Bien d'autres nombres figurés peuvent s'exprimer à l'aide de polynômes d'Ehrhart. Par exemple, les nombres pyramidaux carrés sont donnés par le polynôme d'Ehrhart d'une pyramide à base carrée de côtés et de hauteur 1 ; le polynôme d'Ehrhart est dans ce cas 1/6(t + 1)(t + 2)(2t + 3).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.