Anthony Christopher DavisonAnthony Davison has published on a wide range of topics in statistical theory and methods, and on environmental, biological and financial applications. His main research interests are statistics of extremes, likelihood asymptotics, bootstrap and other resampling methods, and statistical modelling, with a particular focus on the first currently. Statistics of extremes concerns rare events such as storms, high winds and tides, extreme pollution episodes, sporting records, and the like. The subject has a long history, but under the impact of engineering and environmental problems has been an area of intense development in the past 20 years. Davison''s PhD work was in this area, in a project joint between the Departments of Mathematics and Mechanical Engineering at Imperial College, with the aim of modelling potential high exposures to radioactivity due to releases from nuclear installations. The key tools developed, joint with Richard Smith, were regression models for exceedances over high thresholds, which generalized earlier work by hydrologists, and formed the basis of some important later developments. This has led to an ongoing interest in extremes, and in particular their application to environmental and financial data. A major current interest is the development of suitable methods for modelling rare spatio-temporal events, particularly but not only in the context of climate change. Likelihood asymptotics too have undergone very substantial development since 1980. Key tools here have been saddlepoint and related approximations, which can give remarkably accurate approximate distribution and density functions even for very small sample sizes. These approximations can be used for wide classes of parametric models, but also for certain bootstrap and resampling problems. The literature on these methods can seem arcane, but they are potentially widely applicable, and Davison wrote a book joint with Nancy Reid and Alessandra Brazzale intended to promote their use in applications. Bootstrap methods are now used in many areas of application, where they can provide a researcher with accurate inferences tailor-made to the data available, rather than relying on large-sample or other approximations of doubtful validity. The key idea is to replace analytical calculations of biases, variances, confidence and prediction intervals, and other measures of uncertainty with computer simulation from a suitable statistical model. In a nonparametric situation this model consists of the data themselves, and the simulation simply involves resampling from the existing data, while in a parametric case it involves simulation from a suitable parametric model. There is a wide range of possibilities between these extremes, and the book by Davison and Hinkley explores these for many data examples, with the aim of showing how and when resampling methods succeed and why they can fail. He was Editor of Biometrika (2008-2017), Joint Editor of Journal of the Royal Statistical Society, series B (2000-2003), editor of the IMS Lecture Notes Monograph Series (2007), Associate Editor of Biometrika (1987-1999), and Associate Editor of the Brazilian Journal of Probability and Statistics (1987 2006). Currently he on the editorial board of Annual Reviews of Statistics and its Applications. He has served on committees of Royal Statistical Society and of the Institute of Mathematical Statistics. He is an elected Fellow of the American Statistical Assocation and of the Institute of Mathematical Statistics, an elected member of the International Statistical Institute, and a Chartered Statistician. In 2009 he was awarded a laurea honoris causa in Statistical Science by the University of Padova, in 2011 he held a Francqui Chair at Hasselt University, and in 2012 he was Mitchell Lecturer at the University of Glasgow. In 2015 he received the Guy Medal in Silver of the Royal Statistical Society and in 2018 was a Medallion Lecturer of the Institute of Mathematical Statistics.
Pascal FuaPascal Fua received an engineering degree from Ecole Polytechnique, Paris, in 1984 and the Ph.D. degree in Computer Science from the University of Orsay in 1989. He then worked at SRI International and INRIA Sophia-Antipolis as a Computer Scientist. He joined EPFL in 1996 where he is now a Professor in the School of Computer and Communication Science and heads the Computer Vision Laboratory. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and Augmented Reality. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and machine learning. He has (co)authored over 300 publications in refereed journals and conferences. He is an IEEE Fellow and has been an Associate Editor of IEEE journal Transactions for Pattern Analysis and Machine Intelligence. He often serves as program committee member, area chair, and program chair of major vision conferences and has cofounded three spinoff companies (Pix4D, PlayfulVision, and NeuralConcept).
Ali H. SayedAli H. Sayed est doyen de la Faculté des sciences et techniques de l’ingénieur (STI) de l'EPFL, en Suisse, où il dirige également le laboratoire de systèmes adaptatifs. Il a également été professeur émérite et président du département d'ingénierie électrique de l'UCLA. Il est reconnu comme un chercheur hautement cité et est membre de la US National Academy of Engineering. Il est également membre de l'Académie mondiale des sciences et a été président de l'IEEE Signal Processing Society en 2018 et 2019.
Le professeur Sayed est auteur et co-auteur de plus de 570 publications et de six monographies. Ses recherches portent sur plusieurs domaines, dont les théories d'adaptation et d'apprentissage, les sciences des données et des réseaux, l'inférence statistique et les systèmes multi-agents, entre autres.
Ses travaux ont été récompensés par plusieurs prix importants, notamment le prix Fourier de l'IEEE (2022), le prix de la société Norbert Wiener (2020) et le prix de l'éducation (2015) de la société de traitement des signaux de l'IEEE, le prix Papoulis (2014) de l'Association européenne de traitement des signaux, le Meritorious Service Award (2013) et le prix de la réalisation technique (2012) de la société de traitement des signaux de l'IEEE, le prix Terman (2005) de la société américaine de formation des ingénieurs, le prix de conférencier émérite (2005) de la société de traitement des signaux de l'IEEE, le prix Koweït (2003) et le prix Donald G. Fink (1996) de l'IEEE. Ses publications ont été récompensées par plusieurs prix du meilleur article de l'IEEE (2002, 2005, 2012, 2014) et de l'EURASIP (2015). Pour finir, Ali H. Sayed est aussi membre de l'IEEE, d'EURASIP et de l'American Association for the Advancement of Science (AAAS), l'éditeur de la revue Science.
Lenka ZdeborováLenka Zdeborová is a Professor of Physics and of Computer Science in École Polytechnique Fédérale de Lausanne where she leads the Statistical Physics of Computation Laboratory. She received a PhD in physics from University Paris-Sud and from Charles University in Prague in 2008. She spent two years in the Los Alamos National Laboratory as the Director's Postdoctoral Fellow. Between 2010 and 2020 she was a researcher at CNRS working in the Institute of Theoretical Physics in CEA Saclay, France. In 2014, she was awarded the CNRS bronze medal, in 2016 Philippe Meyer prize in theoretical physics and an ERC Starting Grant, in 2018 the Irène Joliot-Curie prize, in 2021 the Gibbs lectureship of AMS. She is an editorial board member for Journal of Physics A, Physical Review E, Physical Review X, SIMODS, Machine Learning: Science and Technology, and Information and Inference. Lenka's expertise is in applications of concepts from statistical physics, such as advanced mean field methods, replica method and related message-passing algorithms, to problems in machine learning, signal processing, inference and optimization. She enjoys erasing the boundaries between theoretical physics, mathematics and computer science.
Boi FaltingsProfessor Faltings joined EPFL in 1987 as professor of Artificial Intelligence. He holds a PhD degree from the University of Illinois at Urbana-Champaign, and a diploma from the ETHZ. His research has spanned different areas of intelligent systems linked to model-based reasoning. In particular, he has contributed to qualitative spatial reasoning, case-based reasoning (especially for design problems), constraint satisfaction for design and logistics problems, multi-agent systems, and intelligent user interfaces. His current work is oriented towards multi-agent systems and social computing, using concepts of game theory, constraint optimization and machine learning. In 1999, Professor Faltings co-founded Iconomic Systems, a company that developed a new agent-based paradigm for travel e-commerce. He has since co-founded 5 other startup companies and advised several others. Prof. Faltings has published more than 150 refereed papers on his work, and participates regularly in program committees of all major conferences in the field. He has served as associate editor of of the major journals, including the Journal of Artificial Intelligence Research (JAIR) and the Artificial Intelligence Journal. From 1996 to 1998, he served as head of the computer science department.
Jean-Pierre HubauxJean-Pierre Hubaux is a full professor at EPFL and head of the Laboratory for Data Security. Through his research, he contributes to laying the foundations and developing the tools for protecting privacy in today’s hyper-connected world. He has pioneered the areas of privacy and security in mobile/wireless networks and in personalized health. He is the academic director of the Center for Digital Trust (C4DT). He leads the Data Protection in Personalized Health (DPPH) project funded by the ETH Council and is a co-chair of the Data Security Work Stream of the Global Alliance for Genomics and Health (GA4GH). From 2008 to 2019 he was one of the seven commissioners of the Swiss FCC. He is a Fellow of both IEEE (2008) and ACM (2010). Recent awards: two of his papers obtained distinctions at the IEEE Symposium on Security and Privacy in 2015 and 2018. He is among the most cited researchers in privacy protection and in information security. Spoken languages: French, English, German, Italian
Patrick ThiranPatrick Thiran is a full professor in network and systems theory at the School of Computer and Communication Sciences at EPFL. He holds an electrical engineering degree from the Université Catholique de Louvain, Louvain-la-Neuve, Belgium, an M.Sc. degree in electrical engineering from the University of California at Berkeley, USA, and he received the PhD degree from EPFL, in 1996. He became an adjunct professor in 1998, an assistant professor in 2002, an associate professor in 2006 and a full professor in 2011. He was with Sprint Advanced Technology Labs in Burlingame, California, in 2000-01.
His research interests are in communication and social networks, performance analysis and stochastic models. He is currently active in the analysis and design of wireless and PLC networks (scaling laws, medium access control), in network monitoring (network tomography, multi-layer networks), and data-driven network science. He also contributed to network calculus and to the theory of locally coupled neural networks and self-organizing maps.
He served as an associate editor for the IEEE Transactions on Circuits and Systems in 1997-99 and for the IEEE/ACM Transactions on Networking in 2006-10. He is currently on the editorial board of the IEEE Journal on Selected Areas in Communication. He is/was on the program committee of different conferences in networking, including ACM Sigcomm, Sigmetrics, IMC, CoNext and IEEE Infocom. He was TPC chair of AMC IMC 2011 and CoNext 2012. He is a Fellow of the Belgian American Educational Foundation and of the IEEE. He received the 1996 EPFL Doctoral Prize and the 2008 Crédit Suisse Teaching Award.