Publications associées (133)

Exploiting the Signal-Leak Bias in Diffusion Models

Sabine Süsstrunk, Radhakrishna Achanta, Mahmut Sami Arpa, Martin Nicolas Everaert, Athanasios Fitsios

There is a bias in the inference pipeline of most diffusion models. This bias arises from a signal leak whose distribution deviates from the noise distribution, creating a discrepancy between training and inference processes. We demonstrate that this signa ...
2024

Multivariate geometric anisotropic Cox processes

Sofia Charlotta Olhede

This paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from th ...
WILEY2023

Keep Sensors in Check: Disentangling Country-Level Generalization Issues in Mobile Sensor-Based Models with Diversity Scores

Daniel Gatica-Perez, Lakmal Buddika Meegahapola

Machine learning models trained with passive sensor data from mobile devices can be used to perform various inferences pertaining to activity recognition, context awareness, and health and well-being. Prior work has improved inference performance through t ...
New York2023

Distribution Inference Risks: Identifying and Mitigating Sources of Leakage

Robert West, Maxime Jean Julien Peyrard, Valentin Hartmann, Léo Nicolas René Meynent

A large body of work shows that machine learning (ML) models can leak sensitive or confidential information about their training data. Recently, leakage due to distribution inference (or property inference) attacks is gaining attention. In this attack, the ...
IEEE COMPUTER SOC2023

A Framework for Autonomic Computing for In Situ Imageomics

Nina Marion Aurélia Van Tiel

In situ imageomics is a new approach to study ecological, biological and evolutionary systems wherein large image and video data sets are captured in the wild and machine learning methods are used to infer biological traits of individual organisms, animal ...
The Institute of Electrical and Electronics Engineers, Inc2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.