We obtain new Fourier interpolation and uniqueness results in all dimensions, extending methods and results by the first author and M. Sousa [11] and the second author [12]. We show that the only Schwartz function which, together with its Fourier transform ...
We prove that every Schwartz function in Euclidean space can be completely recovered given only its restrictions and the restrictions of its Fourier transform to all origin-centered spheres whose radii are square roots of integers. In particular, the only ...
In every dimension d >= 2, we give an explicit formula that expresses the values of any Schwartz function on R-d only in terms of its restrictions, and the restrictions of its Fourier transform, to all origin-centered spheres whose radius is the square roo ...
Une approche par équations intégrales volumiques du problème de contact élastoplastique périodique est présentée. Elle repose sur la formulation des fonctions de Green nécessaires au calcul des opérateurs intégraux directement dans l’espace de Fourier. Cel ...
The fractional Laplacian (-Delta)(gamma/2) commutes with the primary coordination transformations in the Euclidean space Rd: dilation, translation and rotation, and has tight link to splines, fractals and stable Levy processes. For 0 < gamma < d, its inver ...
In this paper we construct an explicit interpolation formula for Schwartz functions on the real line. The formula expresses the value of a function at any given point in terms of the values of the function and its Fourier transform on the set {0,+/- 1,+/- ...
The main topic of this thesis is the study of the non-linear stochastic wave equation in spatial dimension greater than 3 driven by spatially homogeneous Gaussian noise that is white in time. We are interested in questions of existence and uniqueness of so ...
Families of energy operators and generalized energy operators have recently been introduced in the definition of the solutions of linear Partial Differential Equations (PDEs) with a particular application to the wave equation [ 15]. To do so, the author ha ...