Cours associés (32)
EE-559: Deep learning
This course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
EE-566: Adaptation and learning
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
PHYS-754: Lecture series on scientific machine learning
This lecture presents ongoing work on how scientific questions can be tackled using machine learning. Machine learning enables extracting knowledge from data computationally and in an automatized way.
EE-550: Image and video processing
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
BIO-603(LG): Practical - LaManno Lab
Give students a feel for how single-cell genomics datasets are analyzed from raw data to data interpretation. Different steps of the analysis will be demonstrated and the most common statistical and b
CS-456: Deep reinforcement learning
This course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
CS-328: Numerical methods for visual computing and ML
Visual computing and machine learning are characterized by their reliance on numerical algorithms to process large amounts of information such as images, shapes, and 3D volumes. This course will famil
MICRO-511: Image processing I
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping using Jupyter notebooks. Application to real-world examples in

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.