vignette|300x300px| La nappe de courant héliosphérique est une forme tridimensionnelle qui résulte de l'influence du champ magnétique tournant du Soleil sur le plasma du milieu interplanétaire. Cinq planètes sont visibles, Mercure, Vénus, Terre, Mars, et Jupiter.
La nappe de courant héliosphérique, ou nappe de courant interplanétaire, est une surface séparant l'héliosphère en deux régions : celle où le champ magnétique interplanétaire se dirige vers le Soleil et celle où il s'en éloigne. Un faible courant électrique d'une densité d'environ circule au voisinage de cette surface, formant une nappe de courant. La forme de la nappe de courant résulte de l'influence du champ magnétique du Soleil sur le plasma du milieu interplanétaire. L'épaisseur de la nappe actuelle est d'environ près de l'orbite de la Terre.
droite|vignette|300x300px| La spirale de Parker.
Du fait que le Soleil tourne sur lui-même, son champ magnétique prend la forme d'une spirale d'Archimède qui s'étend à travers le système solaire. Ce phénomène est souvent appelé la spirale de Parker, d'après le travail d'Eugene Parker qui avait prédit la structure du champ magnétique interplanétaire. La nature en spirale du champ magnétique héliosphérique avait été notée plus tôt par Hannes Alfvén, en s'inspirant de la structure de la queue des comètes.
Les effets de ce champ magnétique sur le milieu interplanétaire (le vent solaire) créent la plus grande structure connue dans le système solaire : la nappe de courant héliosphérique. Le champ magnétique en spirale de Parker est divisé en deux parties par une nappe de courant, un modèle mathématique développé pour la première fois au début des années 1970 par Schatten. Il se déforme en une spirale ondulée qui est parfois comparée à la jupe d'une ballerine. L'ondulation de la nappe de courant est due à l'angle d'inclinaison de l'axe du dipôle du champ magnétique par rapport à l'axe de rotation du Soleil et aux variations par rapport à un champ dipolaire idéal.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
vignette|La nappe de courant héliosphérique le long de la spirale de Parker est la forme prise par le champ magnétique solaire dans le milieu interplanétaire. Le champ magnétique interplanétaire (CMI), également connu sous le nom de champ magnétique de l'héliosphère, est le champ magnétique du Soleil porté par le vent solaire à travers les planètes et autres corps du Système solaire, dans le milieu interplanétaire jusqu'au confins de l'héliosphère. Les modélisations actuelles du CMI lui donnent une forme de spirale, nommée spirale de Parker.
Un courant de Birkeland est un courant électrique dans un plasma spatial, ou plus précisément, lorsque des particules chargées dans le courant suivent les lignes de champ magnétique en spiralant. L'accélération qui en résulte le long des lignes de champ magnétique donne leur nom de « courants alignés » aux courants de Birkeland. Ils sont causés par le mouvement d'un plasma perpendiculaire au champ magnétique.
Le milieu interplanétaire est la matière diffuse qui constitue l'espace du Système solaire et à travers laquelle se déplacent les objets et les véhicules spatiaux. L'espace interplanétaire désigne la région de l'espace entre les planètes du Système solaire. Il est défini approximativement comme étant la zone située à l'extérieur de l'influence notable du champ gravitationnel des planètes, où s'exerce principalement l'influence du Soleil.
Explore la magnétohydrodynamique, en mettant l'accent sur le modèle à deux fluides, le théorème d'Alfvén, le vent solaire, les dynamos et la reconnection magnétique.
Couvre la magnétohydrodynamique, se concentrant sur les défis de modélisation et les équations MHD en physique du plasma.
Explore la loi d'Ampère-Laplace pour le calcul du champ magnétique et ses applications pratiques.
The performance of magnetic confinement fusion devices, such as tokamaks, is strongly correlated to the phenomena that occur in the boundary region of the plasma core that faces the wall of the device. The dominant cross-field transport mechanisms from the ...
The Telescope Array Collaboration has reported an evidence for existence of a source of ultrahigh energy cosmic ray events in Perseus-Pisces supercluster. We show that the mere existence of such a source imposes an upper bound on the strength of intergalac ...
The plasma environment at a comet can be divided into different regions with distinct plasma characteristics. Two such regions are the solar wind ion cavity, which refers to the part of the outer coma that does not contain any solar wind ions anymore; and ...