Surface states are electronic states found at the surface of materials. They are formed due to the sharp transition from solid material that ends with a surface and are found only at the atom layers closest to the surface. The termination of a material with a surface leads to a change of the electronic band structure from the bulk material to the vacuum. In the weakened potential at the surface, new electronic states can be formed, so called surface states.
As stated by Bloch's theorem, eigenstates of the single-electron Schrödinger equation with a perfectly periodic potential, a crystal, are Bloch waves
Here is a function with the same periodicity as the crystal, n is the band index and k is the wave number. The allowed wave numbers for a given potential are found by applying the usual Born–von Karman cyclic boundary conditions. The termination of a crystal, i.e. the formation of a surface, obviously causes deviation from perfect periodicity. Consequently, if the cyclic boundary conditions are abandoned in the direction normal to the surface the behavior of electrons will deviate from the behavior in the bulk and some modifications of the electronic structure has to be expected.
A simplified model of the crystal potential in one dimension can be sketched as shown in Figure 1. In the crystal, the potential has the periodicity, a, of the lattice while close to the surface it has to somehow attain the value of the vacuum level. The step potential (solid line) shown in Figure 1 is an oversimplification which is mostly convenient for simple model calculations. At a real surface the potential is influenced by image charges and the formation of surface dipoles and it rather looks as indicated by the dashed line.
Given the potential in Figure 1, it can be shown that the one-dimensional single-electron Schrödinger equation gives two qualitatively different types of solutions.
The first type of states (see figure 2) extends into the crystal and has Bloch character there.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This class is intended to make students familiar with dye sensitized solar cells. It presents the principle of design and rationalize the influence of various components on the power conversion effici
The course is aimed at giving a general understanding and building a feeling of what electronic states inside a crystal are.
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
Fournit une vue d'ensemble de la physique des jonctions métal-semiconducteur, y compris la fonction de travail, la barrière Schottky, les contacts Ohmic et les hétérojonctions.
Explore les états de surface, le transport de charge dans les semi-conducteurs et les facteurs qui influent sur la mobilité, en soulignant l'importance de comprendre et d'améliorer la mobilité des transporteurs.
In solid-state physics, band bending refers to the process in which the electronic band structure in a material curves up or down near a junction or interface. It does not involve any physical (spatial) bending. When the electrochemical potential of the free charge carriers around an interface of a semiconductor is dissimilar, charge carriers are transferred between the two materials until an equilibrium state is reached whereby the potential difference vanishes.
redresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
redresse=.9|vignette|Bandes d'un semiconducteur. La bande interdite d'un matériau, ou gap, est l'intervalle, situé entre la bande de valence et la bande de conduction, dans lequel la densité d'états électroniques est nulle, de sorte qu'on n'y trouve pas de niveau d'énergie électronique. La largeur de bande interdite, ou band gap en anglais, est une caractéristique fondamentale des matériaux semiconducteurs ; souvent notée , elle est généralement exprimée en électronvolts (eV). Fichier:Band filling diagram.
Modern condensed matter physics relies on the concept of topology to classify matter, from quantum Hall systems to topological insulators. Engineered systems, benefiting from synthetic dimensions, can potentially give access to topological states predicted ...
Amer Assoc Advancement Science2024
, ,
Extensive machine-learning-assisted research has been dedicated to predicting band gaps for perovskites, driven by their immense potential in photovoltaics. Yet, the effectiveness is often hampered by the lack of high-quality band gap data sets, particular ...
Materials that efficiently promote the thermodynamically uphill water-splitting reaction under solar illumination are essential for generating carbon-free ("green") hydrogen. Mapping out the combinatorial space of potential photocatalysts for this reaction ...