Concept

Nombre quasi parfait

En mathématiques, un nombre quasi parfait est un entier n tel que , où est la fonction donnant la somme des diviseurs entiers positifs de n, incluant n. Aucun nombre quasi parfait n'a été trouvé jusqu'à aujourd'hui, mais il a été démontré que, si un nombre quasi parfait existe, alors il est supérieur à 1035 et il a au moins sept diviseurs premiers distincts. Il existe des entiers n dont la somme de tous les diviseurs σ(n) est égale à 2n + 2 : 20, 104, 464, 650, 1952, 130304, 522752 ... (). Beaucoup de ces nombres sont de la forme 2n−1(2n − 3), où 2n − 3 est premier (au lieu de 2n − 1 pour les nombres parfaits). De plus, il existe des entiers n dont la somme de tous les diviseurs σ(n) est égale à 2n − 1, comme les puissances de 2. On les appelle les nombres presque parfaits. Les nombres fiancés sont aux nombres quasi parfaits ce que les nombres amicaux sont aux nombres parfaits.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.