Concept

Nombre premier de Wieferich

Résumé
In number theory, a Wieferich prime is a prime number p such that p2 divides 2p − 1 − 1, therefore connecting these primes with Fermat's little theorem, which states that every odd prime p divides 2p − 1 − 1. Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's Last Theorem, at which time both of Fermat's theorems were already well known to mathematicians. Since then, connections between Wieferich primes and various other topics in mathematics have been discovered, including other types of numbers and primes, such as Mersenne and Fermat numbers, specific types of pseudoprimes and some types of numbers generalized from the original definition of a Wieferich prime. Over time, those connections discovered have extended to cover more properties of certain prime numbers as well as more general subjects such as number fields and the abc conjecture. the only known Wieferich primes are 1093 and 3511 . The stronger version of Fermat's little theorem, which a Wieferich prime satisfies, is usually expressed as a congruence relation 2p -1 ≡ 1 (mod p2). From the definition of the congruence relation on integers, it follows that this property is equivalent to the definition given at the beginning. Thus if a prime p satisfies this congruence, this prime divides the Fermat quotient . The following are two illustrative examples using the primes 11 and 1093: For p = 11, we get which is 93 and leaves a remainder of 5 after division by 11, hence 11 is not a Wieferich prime. For p = 1093, we get or 485439490310...852893958515 (302 intermediate digits omitted for clarity), which leaves a remainder of 0 after division by 1093 and thus 1093 is a Wieferich prime. Wieferich primes can be defined by other equivalent congruences. If p is a Wieferich prime, one can multiply both sides of the congruence 2p−1 ≡ 1 (mod p2) by 2 to get 2p ≡ 2 (mod p2). Raising both sides of the congruence to the power p shows that a Wieferich prime also satisfies 2p2 ≡2p ≡ 2 (mod p2), and hence 2pk ≡ 2 (mod p2) for all k ≥ 1.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.