Concept

LevelDB

LevelDB is an open-source on-disk key-value store written by Google fellows Jeffrey Dean and Sanjay Ghemawat. Inspired by Bigtable, LevelDB is hosted on GitHub under the New BSD License and has been ported to a variety of Unix-based systems, macOS, Windows, and Android. LevelDB stores keys and values in arbitrary byte arrays, and data is sorted by key. It supports batching writes, forward and backward iteration, and compression of the data via Google's Snappy compression library. LevelDB is not an SQL database. Like other NoSQL and dbm stores, it does not have a relational data model and it does not support SQL queries. Also, it has no support for indexes. Applications use LevelDB as a library, as it does not provide a server or command-line interface. MariaDB 10.0 comes with a storage engine which allows users to query LevelDB tables from MariaDB. LevelDB is based on concepts from Google's Bigtable database system. The table implementation for the Bigtable system was developed starting in about 2004, and is based on a different Google internal code base than the LevelDB code. That code base relies on a number of Google code libraries that are not themselves open sourced, so directly open sourcing that code would have been difficult. Jeff Dean and Sanjay Ghemawat wanted to create a system resembling the Bigtable tablet stack that had minimal dependencies and would be suitable for open sourcing, and also would be suitable for use in Chrome for the IndexedDB implementation. They wrote LevelDB starting in early 2011, with the same general design as the Bigtable tablet stack, but not sharing any of the code. LevelDB is used as the backend database for Google Chrome's IndexedDB and is one of the supported backends for Riak. Additionally, Bitcoin Core and go-ethereum store the blockchain metadata using a LevelDB database. Minecraft Bedrock Edition uses a modified version for chunk and entity data storage. Autodesk AutoCAD 2016 also uses LevelDB. Google has provided benchmarks comparing LevelDB's performance to SQLite and Kyoto Cabinet in different scenarios.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.