A dimension is a structure that categorizes facts and measures in order to enable users to answer business questions. Commonly used dimensions are people, products, place and time. (Note: People and time sometimes are not modeled as dimensions.) In a data warehouse, dimensions provide structured labeling information to otherwise unordered numeric measures. The dimension is a data set composed of individual, non-overlapping data elements. The primary functions of dimensions are threefold: to provide filtering, grouping and labelling. These functions are often described as "slice and dice". A common data warehouse example involves sales as the measure, with customer and product as dimensions. In each sale a customer buys a product. The data can be sliced by removing all customers except for a group under study, and then diced by grouping by product. A dimensional data element is similar to a categorical variable in statistics. Typically dimensions in a data warehouse are organized internally into one or more hierarchies. "Date" is a common dimension, with several possible hierarchies: "Days (are grouped into) Months (which are grouped into) Years", "Days (are grouped into) Weeks (which are grouped into) Years" "Days (are grouped into) Months (which are grouped into) Quarters (which are grouped into) Years" etc. A slowly changing dimension is a set of data attributes that change slowly over a period of time rather than changing regularly e.g. address or name. These attributes can change over a period of time and that will get combined as a slowly changing dimension. These dimension can be classified in types: Type 0 (Retain original): Attributes never change. No history. Type 1 (Overwrite): Old values are overwritten with new values for attribute. No history. Type 2 (Add new row): A new row is created with either a start date / end date or a version for a new value. This creates history. Type 3 (Add new attribute): A new column is created for a new value. History is limited to the number of columns designated for storing historical data.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-422: Database systems
This course is intended for students who want to understand modern large-scale data analysis systems and database systems. It covers a wide range of topics and technologies, and will prepare students
Séances de cours associées (29)
Vues : Simplification des requêtes SQL
Explore les vues dans SQL, couvrant la création, la matérialisation, la maintenance, la construction de cubes et les optimisations de requêtes top-k.
Entrepôts de données et systèmes d'aide à la décision
Explore les vues dans les entrepôts de données, les compromis de matérialisation, les optimisations de requêtes top-k, et l'impact des magasins de colonnes.
Vues : Simplification des requêtes SQL
Explore comment les vues simplifient l'écriture des requêtes et sont clés dans les entrepôts de données.
Afficher plus
Publications associées (30)
Concepts associés (3)
Fact table
In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation schema. A fact table typically has two types of columns: those that contain facts and those that are a foreign key to dimension tables. The primary key of a fact table is usually a composite key that is made up of all of its foreign keys.
Extract-transform-load
Extract-transform-load est une technologie informatique intergicielle permettant d'effectuer des synchronisations massives d'information d'une source de données (le plus souvent une base de données) vers une autre. Cette technologie est connue sous le sigle ETL, ou extracto-chargeur. Selon le contexte, il s'agit d'exploiter différentes fonctions, souvent combinées entre elles : « extraction », « transformation », « constitution » ou « conversion », « alimentation » ou « chargement ».
Entrepôt de données
vignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.