Résumé
Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles. Functionalized metal nanoparticles are more stable toward solvents compared to non-functionalized metal nanoparticles. In liquids, the metal nanoparticles can be affected by van der Waals force. Particle aggregation can sometimes decrease catalytic activity by lowering the surface area. Nanoparticles can also be functionalized with polymers or oligomers to sterically stabilize the nanoparticles by providing a protective layer that prevents the nanoparticles from interacting with each other. Alloys of two metals, called bimetallic nanoparticles, are used to create synergistic effects on catalysis between the two metals. Nanoparticle catalysts are active for the hydrogenolysis of C-Cl bonds such as polychlorinated biphenyls. Another reaction is hydrogenation of halogenated aromatic amines is also important for the synthesis of herbicides and pesticides as well as diesel fuel. In organic chemistry, hydrogenation of a C-Cl bond with deuterium is used to selectively label the aromatic ring for use in experiments dealing with the kinetic isotope effect. Buil et al. created rhodium complexes that generated rhodium nanoparticles. These nanoparticles catalyzed the dehalogenation of aromatic compounds as well as the hydrogenation of benzene to cyclohexane. Polymer-stabilized nanoparticles can also be used for the hydrogenation of cinnamaldehyde and citronellal. Yu et al. found that the ruthenium nanocatalysts are more selective in the hydrogenation of citronellal compared to the traditional catalysts used. The Reduction of gold, cobalt, nickel, palladium, or platinum organometallic complexes with silanes produces metal nanoparticle that catalyze the hydrosilylation reaction.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.