Anneau sans diviseur de zéroEn théorie des anneaux, un anneau sans diviseur de zéro () est un anneau unitaire dans lequel un produit est nul seulement si l'un des facteurs est nul, autrement dit dans lequel l'implication suivante est vérifiée : En d'autres termes, c'est un anneau dans lequel il n'y a aucun diviseur de zéro (ni à droite, ni à gauche). Certains auteurs exigent également que la condition 1 ≠ 0 soit remplie ou, ce qui revient au même, que l'anneau ait au moins deux éléments.
Diviseur de zéroEn mathématiques, dans un anneau, un diviseur de zéro est un élément non nul dont le produit par un certain élément non nul est égal à zéro. Soient un anneau et tel que , où est l'élément neutre pour la loi . On dit que est un diviseur de zéro à gauche dans si On dit que est un diviseur de zéro à droite dans si On dit que est un diviseur de zéro dans si est un diviseur de zéro à gauche dans ou un diviseur de zéro à droite dans . Un élément de est dit régulier s'il n'est ni nul, ni diviseur de zéro.
Anneau commutatifUn anneau commutatif est un anneau dans lequel la loi de multiplication est commutative. L’étude des anneaux commutatifs s’appelle l’algèbre commutative. Un anneau commutatif est un anneau (unitaire) dans lequel la loi de multiplication est commutative. Dans la mesure où les anneaux commutatifs sont des anneaux particuliers, nombre de concepts de théorie générale des anneaux conservent toute leur pertinence et leur utilité en théorie des anneaux commutatifs : ainsi ceux de morphismes d'anneaux, d'idéaux et d'anneaux quotients, de sous-anneaux, d'éléments nilpotents.
Anneau intègreUn anneau intègre ou anneau d'intégrité est un anneau commutatif unitaire différent de l'anneau nul et qui ne possède aucun diviseur de zéro. Un anneau commutatif unitaire est dit intègre s'il est différent de l'anneau nul (autrement dit : si 1 ≠ 0) et sans diviseur de zéro, c’est-à-dire : En pratique, travailler dans un anneau intègre permet de résoudre des équations produit-nul.