Concept

Anneau sans diviseur de zéro

In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain. Mathematical literature contains multiple variants of the definition of "domain". The ring is not a domain, because the images of 2 and 3 in this ring are nonzero elements with product 0. More generally, for a positive integer , the ring is a domain if and only if is prime. A finite domain is automatically a finite field, by Wedderburn's little theorem. The quaternions form a noncommutative domain. More generally, any division algebra is a domain, since all its nonzero elements are invertible. The set of all integral quaternions is a noncommutative ring which is a subring of quaternions, hence a noncommutative domain. A matrix ring Mn(R) for n ≥ 2 is never a domain: if R is nonzero, such a matrix ring has nonzero zero divisors and even nilpotent elements other than 0. For example, the square of the matrix unit E12 is 0. The tensor algebra of a vector space, or equivalently, the algebra of polynomials in noncommuting variables over a field, is a domain. This may be proved using an ordering on the noncommutative monomials. If R is a domain and S is an Ore extension of R then S is a domain. The Weyl algebra is a noncommutative domain. The universal enveloping algebra of any Lie algebra over a field is a domain. The proof uses the standard filtration on the universal enveloping algebra and the Poincaré–Birkhoff–Witt theorem. Suppose that G is a group and K is a field. Is the group ring R = K[G] a domain? The identity shows that an element g of finite order n > 1 induces a zero divisor 1 − g in R. The zero divisor problem asks whether this is the only obstruction; in other words, Given a field K and a torsion-free group G, is it true that K[G] contains no zero divisors? No counterexamples are known, but the problem remains open in general (as of 2017).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.