In signal processing, a causal filter is a linear and time-invariant causal system. The word causal indicates that the filter output depends only on past and present inputs. A filter whose output also depends on future inputs is non-causal, whereas a filter whose output depends only on future inputs is anti-causal. Systems (including filters) that are realizable (i.e. that operate in real time) must be causal because such systems cannot act on a future input. In effect that means the output sample that best represents the input at time comes out slightly later. A common design practice for digital filters is to create a realizable filter by shortening and/or time-shifting a non-causal impulse response. If shortening is necessary, it is often accomplished as the product of the impulse-response with a window function. An example of an anti-causal filter is a maximum phase filter, which can be defined as a stable, anti-causal filter whose inverse is also stable and anti-causal. The following definition is a sliding or moving average of input data . A constant factor of is omitted for simplicity: where could represent a spatial coordinate, as in image processing. But if represents time , then a moving average defined that way is non-causal (also called non-realizable), because depends on future inputs, such as . A realizable output is which is a delayed version of the non-realizable output. Any linear filter (such as a moving average) can be characterized by a function h(t) called its impulse response. Its output is the convolution In those terms, causality requires and general equality of these two expressions requires h(t) = 0 for all t < 0. Let h(t) be a causal filter with corresponding Fourier transform H(ω). Define the function which is non-causal. On the other hand, g(t) is Hermitian and, consequently, its Fourier transform G(ω) is real-valued. We now have the following relation where Θ(t) is the Heaviside unit step function. This means that the Fourier transforms of h(t) and g(t) are related as follows where is a Hilbert transform done in the frequency domain (rather than the time domain).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.