In electrical engineering, a synchronous condenser (sometimes called a syncon, synchronous capacitor or synchronous compensator) is a DC-excited synchronous motor, whose shaft is not connected to anything but spins freely. Its purpose is not to convert electric power to mechanical power or vice versa, but to adjust conditions on the electric power transmission grid. Its field is controlled by a voltage regulator to either generate or absorb reactive power as needed to adjust the grid's voltage, or to improve power factor. The condenser’s installation and operation are identical to large electric motors and generators (some generators are actually designed to be able to operate as synchronous condensers with the prime mover disconnected). Increasing the device's field excitation results in its furnishing reactive power (measured in units of var) to the system. Its principal advantage is the ease with which the amount of correction can be adjusted. Synchronous condensers are an alternative to capacitor banks for power-factor correction in power grids. One advantage is that the amount of reactive power from a synchronous condenser can be continuously adjusted. Reactive power from a capacitor bank decreases when grid voltage decreases while the reactive power from a synchronous condenser inherently increases as voltage decreases. However, synchronous machines have higher energy losses than static capacitor banks. Most synchronous condensers connected to electrical grids are rated between 20 MVAR (megavar) and 200 MVAR and many are hydrogen cooled. There is no explosion hazard as long as the hydrogen concentration is maintained above 70%, typically above 91%. A syncon can be 8 metres long and 5 meters tall, weighing 170 tonnes. Synchronous condensers also help stabilize grids. The kinetic energy stored in the rotor of the machine and its inductance can help stabilize a power system during rapid fluctuations of loads such as those created by short circuits or electric arc furnaces.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
EE-473: Principles of power systems
The course provides the fundamental concepts to model power systems and understand their operation.
Séances de cours associées (7)
Dynamique des fluides: Équations d'Euler
Couvre les équations d'Euler pour la dynamique des fluides et les lois de conservation appliquées.
Machines synchrones: Bases et caractéristiques
Explore les bases et les caractéristiques des machines synchrones, en mettant l'accent sur la tension induite, l'équilibre de puissance et le couple.
Alimentation dans les circuits AC
Explique comment calculer la puissance instantanée dans les circuits CA et discute des composants de puissance pour les différents éléments du circuit.
Afficher plus
Publications associées (38)

Performance assessment of Synchronous Condensers vs Voltage Source Converters providing grid-forming functions

Mario Paolone

Having sufficient grid-forming sources is one of the necessary conditions to guarantee the stability in a power system hosting a very large share of inverter-based generation. The grid-forming function has been historically fulfilled by synchronous machine ...
IEEE2021

Performance assessment of grid-forming and grid-following converter-interfaced battery energy storage systems on frequency regulation in low-inertia power grids

Mario Paolone, Fabrizio Sossan, Yihui Zuo, Antonio Zecchino, Zhao Yuan

Power systems with large shares of converter-interfaced renewables may be characterised by low grid inertia due to the lack of frequency containment provided by synchronous generators. Battery energy storage systems (BESSs), which can adjust their power ou ...
2021

Impact of battery energy storage systems on the dynamic behavior of low-inertia power grids

Yihui Zuo

The extensive deployment of non-synchronous generation determines lower level of grid inertia resulting in deteriorated frequency containment performance and abnormal frequency excursions in case of contingency. This calls for identifying assets, controls, ...
EPFL2021
Afficher plus
Concepts associés (2)
Puissance électrique
vignette|L'énergie électrique est transmise par des lignes aériennes comme celles-ci, mais aussi par des câbles souterrains à haute tension. La puissance électrique est le taux, par unité de temps, auquel l'énergie électrique est transférée par un circuit électrique. Selon le Système international d'unités, l'unité de mesure de cette puissance est le watt, symbole W, soit l'équivalent de la puissance necessaire pour transférer uniformément un joule d'énergie pendant une seconde.
AC power
In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt. The portion of instantaneous power that, averaged over a complete cycle of the AC waveform, results in net transfer of energy in one direction is known as instantaneous active power, and its time average is known as active power or real power.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.